期刊文献+
共找到112篇文章
< 1 2 6 >
每页显示 20 50 100
Multimodel Ensemble Forecast of Global Horizontal Irradiance at PV Power Stations Based on Dynamic Variable Weight
1
作者 YUAN Bin SHEN Yan-bo +6 位作者 DENG Hua YANG Yang CHEN Qi-ying YE Dong MO Jing-yue YAO Jin-feng LIU Zong-hui 《Journal of Tropical Meteorology》 SCIE 2024年第3期327-336,共10页
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m... In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m-2,particularly below 400 W m-2,with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m-2.As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately. 展开更多
关键词 GHI forecast multimodel ensemble dynamic variable weight pv power station
下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
2
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(pv)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(ESN)
下载PDF
Rolling Generation Dispatch Based on Ultra-short-term Wind Power Forecast
3
作者 Qiushi Xu Changhong Deng 《Energy and Power Engineering》 2013年第4期630-635,共6页
The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A roll... The power systems economic and safety operation considering large-scale wind power penetration are now facing great challenges, which are based on reliable power supply and predictable load demands in the past. A rolling generation dispatch model based on ultra-short-term wind power forecast was proposed. In generation dispatch process, the model rolling correct not only the conventional units power output but also the power from wind farm, simultaneously. Second order Markov chain model was utilized to modify wind power prediction error state (WPPES) and update forecast results of wind power over the remaining dispatch periods. The prime-dual affine scaling interior point method was used to solve the proposed model that taken into account the constraints of multi-periods power balance, unit output adjustment, up spinning reserve and down spinning reserve. 展开更多
关键词 Wind power GENERATION power System ROLLING GENERATION DISPATCH ultra-short-term forecast Markov Chain Model Prime-dual AFFINE Scaling Interior Point Method
下载PDF
The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy
4
作者 Dandan Xu Haijian Shao +1 位作者 Xing Deng Xia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期567-597,共31页
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w... As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods. 展开更多
关键词 Deep learning wind power forecasting pv generation and forecasting hidden-layer information analysis topology optimization
下载PDF
基于聚类的HPO-BILSTM光伏功率短期预测
5
作者 周育才 肖添 +2 位作者 谢七月 付强 钟敏 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期512-518,共7页
考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分... 考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分析(PCA)降维和FCM聚类算法将数据按天气类型分为阴、晴、雨;最后通过HPO筛选得出BILSTM神经网络的最佳超参数,避免因超参数设置不佳对实验带来的影响,进一步提高实验的准确性和模型的泛化能力。最后通过预测和对比实验进行分析,验证所提方法的优越性。 展开更多
关键词 光伏发电 双向长短期记忆网络 功率预测 降维 聚类 优化算法
下载PDF
基于TCN-BiLSTM-Attention-ESN的光伏功率预测
6
作者 时培明 郭轩宇 +3 位作者 杜清灿 许学方 贺长波 李瑞雄 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期304-316,共13页
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳... 针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 展开更多
关键词 光伏发电功率 预测 神经网络 回声状态网络 时间卷积网络 双向长短期记忆网络
下载PDF
基于数据集蒸馏的光伏发电功率超短期预测 被引量:1
7
作者 郑珂 王丽婕 +1 位作者 郝颖 王勃 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5196-5207,I0015,共13页
云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预... 云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预测模型。首先,基于待测场站上方的历史云图,采用Farneback光流法预测出云图;然后,根据卫星云分类标签数据建立各类云的样本库,利用数据集蒸馏算法训练样本库得到云类判别图,将预测云图与云类判别图匹配计算,获得云类聚合匹配特征;最后,利用上述特征、云量特征以及数值天气预报数据建立长短期记忆网络模型,对光伏发电功率进行超短期预测。利用某光伏电站数据进行验证,结果显示,该文所提模型能准确描述云层的各项特征,有效提升光伏功率预测精度。 展开更多
关键词 数据集蒸馏 卫星云图 云分类 光流法 超短期光伏功率预测
下载PDF
建筑间遮挡对光伏发电系统输出功率影响的研究 被引量:2
8
作者 黄斌 谢佩伶 +3 位作者 黄佳亮 廖力达 肖孟 赵伟 《太阳能》 2024年第2期45-53,共9页
城市建筑屋顶的光伏发电利用潜力与其遮挡条件密切相关。因此,仅根据太阳辐照度评估城市建筑屋顶光伏发电利用潜力,未考虑城市建筑之间的相互遮挡因素,会导致一些情景下的评估结果偏大。为了准确评估城市建筑屋顶光伏发电利用潜力,采用... 城市建筑屋顶的光伏发电利用潜力与其遮挡条件密切相关。因此,仅根据太阳辐照度评估城市建筑屋顶光伏发电利用潜力,未考虑城市建筑之间的相互遮挡因素,会导致一些情景下的评估结果偏大。为了准确评估城市建筑屋顶光伏发电利用潜力,采用建筑相对朝向、容积面积比及建筑群垂直和水平分布这3个城市形态参数作为预测变量,采用3D建筑模型进行实验,模拟不同形态建筑遮挡,获得多组有效实验数据,对城市不同形态建筑间的遮挡系数进行了量化分析;借助数据统计分析软件SPSS对多组实验数据完成统计分析后,建立了建筑群预测遮挡统计模型,并以长沙市某小区为例对该统计模型的适用性进行了验证,预测了该小区不同情景下的建筑屋顶光伏发电利用潜力。结果显示:利用该统计模型可得到被遮挡建筑的阴影遮挡水平,从而能更好地利用建筑屋顶光伏发电。研究结果提供了一种量化城市屋顶光伏组件遮挡系数的方法,对实现光伏建筑一体化和可持续城市发展有推进作用,可在城市区域建筑规划阶段模拟和预测屋顶遮挡情况。 展开更多
关键词 光伏发电 城市建筑屋顶 建筑间遮挡 利用潜力 阴影遮挡 预测
下载PDF
基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测 被引量:1
9
作者 李超然 潘鹏程 +2 位作者 杨伟荣 徐恒山 魏业文 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期508-516,共9页
为提高光伏发电系统输出功率的预测精度,提出基于改进相似日和蜜獾算法(HBA)优化改进双向长短期记忆神经网络(BiLSTM)与核极限学习机(KELM)的光伏发电预测方法。首先,使用CRITIC权重法动态计算各气象因素对光伏发电功率的影响权重,通过... 为提高光伏发电系统输出功率的预测精度,提出基于改进相似日和蜜獾算法(HBA)优化改进双向长短期记忆神经网络(BiLSTM)与核极限学习机(KELM)的光伏发电预测方法。首先,使用CRITIC权重法动态计算各气象因素对光伏发电功率的影响权重,通过逐时刻计算历史日和待预测日的加权欧氏距离确定相似日。其次,使用HBA优化BiLSTM和KELM模型参数,然后使用HBA参数优化后的BiLSTM进行功率预测,优化后的KELM进行误差优化预测。最后将初步预测功率和误差预测功率相加得到最终预测功率。仿真结果表明:该模型平均绝对百分比误差为0.91%,具有较高的光伏系统输出功率预测精度。 展开更多
关键词 光伏发电 功率预测 神经网络 核极限学习机 蜜獾算法
下载PDF
基于小波包变换与深度学习的超短期光伏功率预测 被引量:1
10
作者 刘源延 孔小兵 +1 位作者 马乐乐 刘向杰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期537-546,共10页
针对光伏功率序列的复杂多变特征,提出一种基于小波包变换(WPT)的门控循环单元(GRU)光伏功率组合预测方法。首先通过相关性分析挑选重要气象因子,并利用WPT将原始光伏功率序列分解为一组子序列;然后,提出一种基于莱维飞行天牛须搜索算法... 针对光伏功率序列的复杂多变特征,提出一种基于小波包变换(WPT)的门控循环单元(GRU)光伏功率组合预测方法。首先通过相关性分析挑选重要气象因子,并利用WPT将原始光伏功率序列分解为一组子序列;然后,提出一种基于莱维飞行天牛须搜索算法(LFBAS)的相似日选择方法,以选择相似于预测日的历史日作为输入数据集;最后,建立一组基于GRU网络的深度学习光伏功率预测模型,将每个子序列预测结果叠加得到光伏功率最终预测结果。仿真结果表明,该文所提出的预测方法在预测精度和计算效率方面具有显著优势。 展开更多
关键词 光伏发电 功率预测 小波包变换 相似日 门控循环单元 天牛须搜索算法
下载PDF
基于SARIMAX-SVR的光伏发电功率预测 被引量:1
11
作者 周鑫 李燕 +1 位作者 曾永辉 石鹏程 《电力系统及其自动化学报》 CSCD 北大核心 2024年第5期1-8,共8页
为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发... 为提高光伏发电功率预测精度,提出一种基于外生因素及季节性的差分自回归移动平均SARIMAX(seasonal autoregressive integrated moving average with exogenous factors)并结合优化支持向量回归SVR(support vector regression)的光伏发电功率预测方法。首先,采用相关性特征法聚类气象条件中关键气象因子,以消除数据冗余并降低ARIMAX模型的复杂性;其次,在ARIMAX模型中引入季节性因素,构建SARIMAX模型来捕捉数据的季节性变化;最后,使用SARIMAX模型的拟合残差其作为SVR模型的输入,进一步拟合数据的非线性。通过仿真算例分析表明,所提方法可显著提高光伏发电功率预测精度。 展开更多
关键词 光伏发电 功率预测 差分自回归移动平均 季节性因子 支持向量回归
下载PDF
光伏出力预测理论与方法综述
12
作者 梁宏涛 王莹 +2 位作者 刘国柱 杜军威 于旭 《青岛科技大学学报(自然科学版)》 CAS 2024年第2期147-158,共12页
大规模光伏发电并网给我国电力系统运行的稳定性带来了巨大挑战,因此,光伏发电出力的精确预测至关重要。论文对光伏出力预测理论与方法进行系统综述。首先,对光伏出力预测进行分类,特别是按预测形式分为点预测和不确定性预测。其次,通... 大规模光伏发电并网给我国电力系统运行的稳定性带来了巨大挑战,因此,光伏发电出力的精确预测至关重要。论文对光伏出力预测理论与方法进行系统综述。首先,对光伏出力预测进行分类,特别是按预测形式分为点预测和不确定性预测。其次,通过物理方法、统计方法、人工智能方法及组合方法进一步阐述光伏出力预测;其中从机器学习和深度学习两个方面对人工智能方法进行详细介绍。然后,梳理了点预测和不确定性预测的评价指标,归纳了人工智能预测模型的优化技术。最后,根据我国光伏出力预测的发展现状,对未来的研究趋势做出展望。 展开更多
关键词 光伏发电出力 人工智能算法 不确定性预测 评价指标 预测模型优化
下载PDF
基于余弦相似度和TSO-BP的短期光伏预测方法
13
作者 陆毅 薛枫 +3 位作者 唐小波 杨坤 李益 马刚 《浙江电力》 2024年第6期22-30,共9页
对光伏出力的精准预测在配电网安全稳定运行中起着至关重要的作用。因此,提出了一种基于余弦相似度和TSO-BP(金枪鱼群优化-反向传播)神经网络的短期光伏预测方法。首先,利用余弦相似度算法筛选出与预测日具有强相似度的历史数据作为训... 对光伏出力的精准预测在配电网安全稳定运行中起着至关重要的作用。因此,提出了一种基于余弦相似度和TSO-BP(金枪鱼群优化-反向传播)神经网络的短期光伏预测方法。首先,利用余弦相似度算法筛选出与预测日具有强相似度的历史数据作为训练样本;然后,采用TSO算法寻找BP神经网络的最优初始权值与阈值,训练TSO-BP短期光伏预测模型;最后,利用TSO-BP模型分别预测平缓天气与波动天气下的光伏出力。仿真结果表明:在平稳和波动两种不同天气情况下,该方法相较于传统预测方法精度更高。 展开更多
关键词 光伏预测 皮尔逊相关系数 余弦相似度 金枪鱼群优化算法 反向传播神经网络
下载PDF
采用RBF神经网络改进有限集模型预测控制算法的光伏系统MPPT研究
14
作者 王田宇 赵葵银 +2 位作者 曹哲 黄炜杰 林国汉 《湖南工程学院学报(自然科学版)》 2024年第2期7-13,共7页
针对基于扰动观察法或电导增量法控制的光伏系统存在发电功率不稳定的问题,提出一种基于RBF神经网络改进的模型预测控制的最大功率点追踪算法,使用RBF神经网络拟合光伏系统功率-电压(P-V)曲线,预测光伏面板发电功率,通过建立光伏系统前... 针对基于扰动观察法或电导增量法控制的光伏系统存在发电功率不稳定的问题,提出一种基于RBF神经网络改进的模型预测控制的最大功率点追踪算法,使用RBF神经网络拟合光伏系统功率-电压(P-V)曲线,预测光伏面板发电功率,通过建立光伏系统前级DC-DC变换器的数学模型,使用模型预测控制确保光伏面板工作在最大功率点提升光电转换效率.通过MATLAB/Simulink仿真结果表明,在外界环境快速变化的情况下,所提策略能有效抑制最大功率点漂移,提高系统光电转换效率. 展开更多
关键词 光伏功率预测 RBF神经网络 有限集模型预测
下载PDF
基于QMD-HBi GRU的短期光伏功率预测方法
15
作者 吉兴全 赵国航 +3 位作者 叶平峰 孟祥剑 杨明 张玉敏 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3850-3859,I0002-I0005,共14页
为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率... 为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率数据的不确定性,基于自适应噪声完备集合经验模态分解、样本熵和变分模态分解对光伏功率数据进行处理,得到一系列较为平稳的本征模函数分量;其次,构建HBi GRU模型以充分挖掘各分量与光伏功率影响因素之间的特征关系,得到各分量预测结果;最后,将各分量预测结果叠加得到短期光伏功率预测结果。以澳大利亚某地光伏电站数据进行测试,仿真结果表明:所提集成预测模型能够有效提高短期光伏功率预测精度,与其他预测模型相比,其归一化平均绝对误差和均方根误差分别降低了3.21%和5.04%,决定系数提高了22.7%。 展开更多
关键词 短期光伏功率预测 混合双向门控循环单元 自适应噪声完备集合经验模态分解 变分模态分解 二次模态分解 深度学习
下载PDF
一种适用于单/多光伏电站的迁移超短期光伏预测建模框架
16
作者 任密蜂 王家辉 +2 位作者 叶泽甫 朱竹军 阎高伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期359-367,共9页
针对新建电站的历史数据量有限,且不同时段光伏数据的分布存在较大差异的问题,构建一种适用于单/多光伏电站的迁移超短期光伏预测建模框架。首先,为充分考量光伏序列的不确定性及数值天气预报的固有偏差,提出一种基于加权滚动时间窗聚... 针对新建电站的历史数据量有限,且不同时段光伏数据的分布存在较大差异的问题,构建一种适用于单/多光伏电站的迁移超短期光伏预测建模框架。首先,为充分考量光伏序列的不确定性及数值天气预报的固有偏差,提出一种基于加权滚动时间窗聚类方法,同时为避免维度过高问题并强化天气类型与光伏发电功率之间的映射关系,提出类内外特征加权结构保持降维算法;其次,通过采用测地线流式核积分完成数据分布对齐,减小样本分布差异对单/多电站模型鲁棒性的影响;最后,采用梯度增强决策树建立光伏功率预测模型,实现光伏功率预测精度的提升。采用公开数据集PVOD验证了所提算法的有效性。 展开更多
关键词 光伏电站 预测 迁移学习 光伏功率超短期预测 结构保持 测地线流式核
下载PDF
有源配电网精细化负荷预测软件开发与应用
17
作者 张瑞雪 侯哲帆 倪永峰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期380-390,共11页
研究新型有源配电网背景下的精细化负荷预测方法,基于数值天气预报采用卷积神经网络Resnet预测光伏功率,考虑负荷特性和气象影响因素采用GRU算法预测用电负荷,光伏功率发电分量和用电负荷分量的预测结果累加得到有源负荷的精细化预测结... 研究新型有源配电网背景下的精细化负荷预测方法,基于数值天气预报采用卷积神经网络Resnet预测光伏功率,考虑负荷特性和气象影响因素采用GRU算法预测用电负荷,光伏功率发电分量和用电负荷分量的预测结果累加得到有源负荷的精细化预测结果。此外,基于配电云主站设计精细化负荷预测的软件架构和功能模块,开展基于短期负荷预测的配电网动态网络重构研究,考虑负荷时序分段,给出日前24小时的动态优化策略。最后,在某地市配电区域进行算例验证,结果表明:对于含源负荷,精细化负荷预测比直接等值负荷预测结果更准确,基于精细化负荷预测的动态网络重构可降低负荷均衡度并优化光伏消纳。 展开更多
关键词 光伏发电 配电网 分布式发电 负荷预测 功率预测 动态网络重构
下载PDF
基于注意力机制的短期光伏功率预测
18
作者 林瑞航 朱宗玖 《现代计算机》 2024年第15期84-87,92,共5页
针对传统的光伏功率预测难度大、精度低等问题,提出一种基于注意力机制的短期光伏功率预测模型,将光伏电站的历史记录数据进行处理后导入到预测模型进行训练,利用CNN局部特征提取功能能力以及BiLSTM处理序列信号的能力,再结合Attention... 针对传统的光伏功率预测难度大、精度低等问题,提出一种基于注意力机制的短期光伏功率预测模型,将光伏电站的历史记录数据进行处理后导入到预测模型进行训练,利用CNN局部特征提取功能能力以及BiLSTM处理序列信号的能力,再结合Attention机制对不同特征进行权重系数分配。选取澳大利亚某光伏电站数据进行模拟仿真,将Attention-CNN-BiLSTM模型与LSTM等模型进行对比,验证了该模型有更好的预测精度。 展开更多
关键词 短期光伏功率预测 注意力机制 卷积神经网络
下载PDF
基于QD和因果注意力TCN的光伏功率区间预测
19
作者 崔京港 王芳 +2 位作者 叶泽甫 朱竹军 阎高伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期488-495,共8页
针对现有短期光伏功率区间预测问题,提出一种时间卷积神经网络与注意力机制结合的框架,对注意力机制中的时间因果顺序进行严格限制,应用残差机制增强模型挖掘的信息能力,并利用质量驱动区间损失优化模型参数,最终实现短期功率区间预测... 针对现有短期光伏功率区间预测问题,提出一种时间卷积神经网络与注意力机制结合的框架,对注意力机制中的时间因果顺序进行严格限制,应用残差机制增强模型挖掘的信息能力,并利用质量驱动区间损失优化模型参数,最终实现短期功率区间预测效果的提高。根据中国河北省某光伏电站的当地气象数据和历史光伏功率数据进行的仿真实验表明,相较于传统的序列预测方法或区间损失,在连续时刻和不同天气类型情况下,所提出的功率区间预测方法效果更有助于电网的科学调度与决策。 展开更多
关键词 光伏发电 功率预测 深度学习 时间卷积网络 因果注意力机制 质量驱动损失
下载PDF
基于CEEMD-LSTM光伏短期功率预测
20
作者 梁亚峰 马立红 +3 位作者 邱剑洪 冯在顺 何雷震 刘承锡 《科学技术与工程》 北大核心 2024年第13期5396-5405,共10页
为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)... 为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)相结合的光伏短期功率预测模型。首先,充分考虑影响光伏出力的太阳辐照度、相对湿度、大气压力和空气温度4种环境因素,通过CEEMD将气象因素特征曲线分解为多模态特征数据,准确捕捉其不同的时间尺度和频率特征,进而充分保留环境数据的不平稳特征。其次,在此基础上,利用LSTM网络对多模态特征数据进行时间序列建模,旨在保留时间序列的季节性和不平稳特征,为后续建模提供更准确的输入特征。最后,通过对分解后的信号开展训练,根据输入数据的变化自适应调整预测模型参数,迭代生成特定场景下的预测模型,从而灵活应对实时环境变化,得到相应功率预测结果。在海南一孤立海岛分布式光伏电站37 kW子阵的8个月气象和功率数据集进行验证,实验结果表明,所提方法在保留环境数据细节和局部特性上具有显著优势,在不同气象条件均具有良好的自适应性,有效提高了光伏短期功率预测精度。 展开更多
关键词 光伏发电 完全经验模态分解 长短期记忆神经网络 光伏短期功率预测 不平稳特征 多模态特征数据
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部