The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel micr...The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.展开更多
Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies,which require compact,multiwavelength laser sources at the tele...Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies,which require compact,multiwavelength laser sources at the telecom band.Here,we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core–shell nanowire array epitaxially grown on InP substrate by selective area epitaxy.To reduce optical loss and tailor the cavity mode,a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality.Owing to the strong quantum confinement effect of InGaAs quantum wells and the successful formation of a vertical Fabry–Pérot cavity between the top nanowire facet and bottom nanowire/SiO_(2) mask interface,stimulated emissions of the EH11a/b mode from single vertical nanowires from an on-substrate nanowire array have been demonstrated with a lasing threshold of~28.2μJ cm^(−2) per pulse and a high characteristic temperature of~128 K.By fine-tuning the In composition of the quantum wells,room temperature,single-mode lasing is achieved in the vertical direction across a broad near-infrared spectral range,spanning from 940 nm to the telecommunication O and C bands.Our research indicates that through a carefully designed facet engineering strategy,highly ordered,uniform nanowire arrays with precise dimension control can be achieved to simultaneously deliver thousands of nanolasers with multiple wavelengths on the same substrate,paving a promising and scalable pathway towards future advanced optoelectronic and photonic systems.展开更多
Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-t...Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.展开更多
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ...Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.展开更多
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
A perfect bidirectional broadband visible light absorber composed of titanium nitride and tungsten nanodisk arrays is proposed.The average absorption of the absorber exceeds 89%at 400 nm–800 nm when light is normally...A perfect bidirectional broadband visible light absorber composed of titanium nitride and tungsten nanodisk arrays is proposed.The average absorption of the absorber exceeds 89%at 400 nm–800 nm when light is normally incident on the front-side.Illumination from the opposite direction(back-side)results in absorption of more than 75%.Through the theoretical analysis of the electric and magnetic fields,the physical mechanism of the broadband perfect absorption is attributed to the synergy of localized surface plasmons,propagating surface plasmons,and plasmonic resonant cavity modes.Furthermore,the absorber also exhibits excellent polarization-independence performance and a high angular tolerance of~30°for both front-and back-side incidence.The designed bidirectional broadband visible light absorber here has wide application prospects in the fields of solar cells and ink-free printing.展开更多
Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manne...Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.展开更多
Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util...Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.展开更多
This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to reali...This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.展开更多
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its el...TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.展开更多
Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(...Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(Ni_(x)MoO_(y)NRs)framework;we found that the introduction of both isolated Rh SAs and Ni_(x)MoO_(y)NRs adjusts the electrocatalytic function of the host Mo_(2)C toward the direction of being an advanced and highly stable electrocatalyst for efficient hydrogen evolution at pH-universal conditions.As a result,the proposed catalyst outperforms most recently reported transition metal-based catalysts,and its performance even rivals that of commercial Pt/C,as demonstrated by its ultralow overpotentials of 31.7,109.7,and 95.4 mV at a current density of 10 mA cm^(-2),along with its small Tafel slopes of 42.4,51.2,and 46.8 mV dec^(-1)in acidic,neutral,and alkaline conditions,respectively.In addition,the catalyst shows remarkable long-term stability over all pH values with good maintenance of its catalytic activity and structural characteristics after continuous operation.展开更多
基金funded by the National Natural Science Foundation of China(Nos.L2224042,T2293731,62121003,61960206012,61973292,62171434,61975206,and 61971400)the Frontier Interdisciplinary Project of the Chinese Academy of Sciences(No.XK2022XXC003)+2 种基金the National Key Research and Development Program of China(Nos.2022YFC2402501 and 2022YFB3205602)the Major Program of Scientific and Technical Innovation 2030(No.2021ZD02016030)the Scientific Instrument Developing Project of he Chinese Academy of Sciences(No.GJJSTD20210004).
文摘The subthalamic nucleus(STN)is considered the best target for deep brain stimulation treatments of Parkinson’s disease(PD).It is difficult to localize the STN due to its small size and deep location.Multichannel microelectrode arrays(MEAs)can rapidly and precisely locate the STN,which is important for precise stimulation.In this paper,16-channel MEAs modified with multiwalled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(MWCNT/PEDOT:PSS)nanocomposites were designed and fabricated,and the accurate and rapid identification of the STN in PD rats was performed using detection sites distributed at different brain depths.These results showed that nuclei in 6-hydroxydopamine hydrobromide(6-OHDA)-lesioned brains discharged more intensely than those in unlesioned brains.In addition,the MEA simultaneously acquired neural signals from both the STN and the upper or lower boundary nuclei of the STN.Moreover,higher values of spike firing rate,spike amplitude,local field potential(LFP)power,and beta oscillations were detected in the STN of the 6-OHDA-lesioned brain,and may therefore be biomarkers of STN localization.Compared with the STNs of unlesioned brains,the power spectral density of spikes and LFPs synchronously decreased in the delta band and increased in the beta band of 6-OHDA-lesioned brains.This may be a cause of sleep and motor disorders associated with PD.Overall,this work describes a new cellular-level localization and detection method and provides a tool for future studies of deep brain nuclei.
基金supported by the Key Research and Development Program(2022YFA1404800)the National Natural Science Foundation of China(62375226,62375225,12374359,62105267)+1 种基金the Fundamental Research Funds for the Central Universities(23GH02023)the Analytical&Testing Center of Northwestern Polytechnical University and the Australian Research Council.The Australian National Fabrication Facility ACT Node is acknowledged for access to the epitaxial growth facilities.
文摘Highly integrated optoelectronic and photonic systems underpin the development of next-generation advanced optical and quantum communication technologies,which require compact,multiwavelength laser sources at the telecom band.Here,we report on-substrate vertical emitting lasing from ordered InGaAs/InP multi-quantum well core–shell nanowire array epitaxially grown on InP substrate by selective area epitaxy.To reduce optical loss and tailor the cavity mode,a new nanowire facet engineering approach has been developed to achieve controlled quantum well nanowire dimensions with uniform morphology and high crystal quality.Owing to the strong quantum confinement effect of InGaAs quantum wells and the successful formation of a vertical Fabry–Pérot cavity between the top nanowire facet and bottom nanowire/SiO_(2) mask interface,stimulated emissions of the EH11a/b mode from single vertical nanowires from an on-substrate nanowire array have been demonstrated with a lasing threshold of~28.2μJ cm^(−2) per pulse and a high characteristic temperature of~128 K.By fine-tuning the In composition of the quantum wells,room temperature,single-mode lasing is achieved in the vertical direction across a broad near-infrared spectral range,spanning from 940 nm to the telecommunication O and C bands.Our research indicates that through a carefully designed facet engineering strategy,highly ordered,uniform nanowire arrays with precise dimension control can be achieved to simultaneously deliver thousands of nanolasers with multiple wavelengths on the same substrate,paving a promising and scalable pathway towards future advanced optoelectronic and photonic systems.
基金Supported by the National Natural Science Foundation of China(NSFC 62105100)the National Key research and development program in the 14th five year plan(2021YFA1200700)。
文摘Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.
基金financially supported by the National Natural Science Foundation of China(21972068,22072067,22232004)the High-level Talents Project of Jinling Institute of Technology(jit-b-202164)。
文摘Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems.
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金the National Key Research and Development Program(Grant No.2022YFB2804602)Shanghai Pujiang Program(Grant No.21PJD048).
文摘A perfect bidirectional broadband visible light absorber composed of titanium nitride and tungsten nanodisk arrays is proposed.The average absorption of the absorber exceeds 89%at 400 nm–800 nm when light is normally incident on the front-side.Illumination from the opposite direction(back-side)results in absorption of more than 75%.Through the theoretical analysis of the electric and magnetic fields,the physical mechanism of the broadband perfect absorption is attributed to the synergy of localized surface plasmons,propagating surface plasmons,and plasmonic resonant cavity modes.Furthermore,the absorber also exhibits excellent polarization-independence performance and a high angular tolerance of~30°for both front-and back-side incidence.The designed bidirectional broadband visible light absorber here has wide application prospects in the fields of solar cells and ink-free printing.
基金the National Natural Science Foundation of China(NSFC,Grant No.51972178)the Natural Science Foundation of Ningbo(2022J139)the Ningbo Yongjiang Talent Introduction Programme(2022A-227-G).
文摘Two-dimensional(2D)oxides have been the focus of substantial research interest recently,owing to their fascinating physico-chemical properties.However,fabrication of large-area 2D oxide materials in a controlled manner under mild conditions still remains a formidable challenge.Herein,we develop a facile and universal strategy based on the sonochemistry approach for controllable and large-area growth of quasi-aligned single-crystalline ZnO nanosheets on a Zn substrate(Zn@SC-ZnO)under ambient conditions.The obtained ZnO nanosheets possess the desired exclusively exposed(001)facets,which have been confirmed to play a critical role in significantly reducing the activation energy and facilitating the stripping/plating processes of Zn.Accordingly,the constructed Zn@SC-ZnO||Zn@SC-ZnO symmetric cell has very low polarization overpotential down to~20 mV,with limited dendrite growth and side reactions for Zn anodes.The developed Zn@SC-ZnO//MnO_(2)aqueous Zn-ion batteries(ZIBs)show a voltage efficiency of 88.2%under 500 mA g^(-1)at the stage of 50%depth of discharge,which is state of the art for ZIBs reported to date.Furthermore,the as-assembled large-size cell(5 cm×5 cm)delivers an open circuit potential of 1.648 V,and can be robustly operated under a high current of 20 mA,showing excellent potential for future scalable applications.
基金supported by the National Natural Science Foundation of China(31870570)the Science and Technology Plan of Fujian Provincial,China(2020H4026,2022G02020 and 2022H6002)+1 种基金the Science and Technology Plan of Xiamen(3502Z20203005)the Scientific Research Start-up Funding for Special Professor of Minjiang Scholars。
文摘Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.
文摘This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金the support from the Brook Byers Institute for Sustainable Systems,Hightower ChairGeorgia Research Alliance at the Georgia Institute of Technology。
文摘TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.
基金Supported from the Regional Leading Research Center Program(2019R1A5A8080326)through the National Research Foundation funded by the Ministry of Science and ICT of Republic of Korea.
文摘Herein,a simple synthetic approach is employed for the atomic dispersion of Rh atoms(Rh SAs)over the surface of interconnected Mo_(2)C nanosheets intimately embedded in a three-dimensional Ni_(x)MoO_(y)nanorod arrays(Ni_(x)MoO_(y)NRs)framework;we found that the introduction of both isolated Rh SAs and Ni_(x)MoO_(y)NRs adjusts the electrocatalytic function of the host Mo_(2)C toward the direction of being an advanced and highly stable electrocatalyst for efficient hydrogen evolution at pH-universal conditions.As a result,the proposed catalyst outperforms most recently reported transition metal-based catalysts,and its performance even rivals that of commercial Pt/C,as demonstrated by its ultralow overpotentials of 31.7,109.7,and 95.4 mV at a current density of 10 mA cm^(-2),along with its small Tafel slopes of 42.4,51.2,and 46.8 mV dec^(-1)in acidic,neutral,and alkaline conditions,respectively.In addition,the catalyst shows remarkable long-term stability over all pH values with good maintenance of its catalytic activity and structural characteristics after continuous operation.