Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
Nano silica due to its spherical shape, tiny size and higher density compared to bitumen, may have an inherent potential to improve hot mix asphalt(HMA) self-healing. In this research scanning electron microscopy(SEM)...Nano silica due to its spherical shape, tiny size and higher density compared to bitumen, may have an inherent potential to improve hot mix asphalt(HMA) self-healing. In this research scanning electron microscopy(SEM) images were used to investigate size, morphology and dispersion of nano silica particles. Additionally, HMA self-healing mechanism was also examined by SEM. Furthermore, dynamic indirect tensile test(IDT) was used to evaluate HMA self-healing index. The SEM results indicated that bitumen mortar flowing into micro cracks may be one of the most important mechanisms of HMA self-healing. The experiment results also showed that modification of bitumen by nano silica promotes the ability of the HMA self-healing.展开更多
This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes b...This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes based on four-point bending beam fatigue tests. A fractional factorial design method named "uniform design" was applied in experimental design. The relations of the environmental factors to initial stiffness, fatigue life, phase angle and cumulative dissipated energy were established with the general linear modeling method. It is found that there exists very good correlativity between the environmental factors and the fatigue performance indices of asphalt mixes. The coefficients of total correlation are mainly beyond 0. 95. The results indicate that the consideration of the effect of environmental factors is necessary in the fatigue performance evaluation on real asphalt pavement.展开更多
In areas where hot mix asphalt(HMA)is likely to be exposed by any form of mineral oil the layer has to withstand the attack of these substances in order not to damage the construction.The European Standard EN 12697-43...In areas where hot mix asphalt(HMA)is likely to be exposed by any form of mineral oil the layer has to withstand the attack of these substances in order not to damage the construction.The European Standard EN 12697-43 provides a test procedure to determine the resistance of HMA to fuel.The paper reviews this method thoroughly.A completely revised and simplified test device for the brush test was developed meeting the requirements of the standard and creating results with a high repeatability at the same time.The test conditions given by the standard such as the exposure to fuel,cleaning of the specimen after exposure or the contact pressure of the brush were varied to isolate those test conditions with a substantial influence on the result.The research revealed that in the standard some conditions with a rather small influence are set quite strictly while other conditions with a distinct influence on the result are not defined with the required accuracy to obtain comparable and repeatable results.The paper presents suggestions for the improvement of the test method and the standard itself in respect to the layout of the test device and the definition of important test conditions to enhance the outcome of the EN 12697-43.展开更多
With the continuous development of domestic highway construction,highway civil engineering and service level quality have attracted much attention.Good pavement quality and high-quality service make people feel comfor...With the continuous development of domestic highway construction,highway civil engineering and service level quality have attracted much attention.Good pavement quality and high-quality service make people feel comfortable and smooth when traveling.High-quality pavement can significantly reduce the probability of traffic accidents.At present,there is a direct relationship between pavement quality and pavement construction operations.Carrying out pavement construction operations in cold high-altitude areas requires a reasonable selection of construction equipment and methods.The application of warm-mix asphalt pavement construction technology can ensure pavement quality.Therefore,this paper analyzes the advantages of warm-mix technology,the environmental characteristics of cold high-altitude areas,and construction preparations,and discusses the construction technology of warm-mix asphalt pavement in cold high-altitude areas in detail,to improve the overall road quality of cold high-altitude areas.展开更多
Current pavement design methods do not allow for the reduction of early deformation of the surface layers of bituminous pavements in the city of Ouagadougou. Weather conditions combined with traffic, particularly duri...Current pavement design methods do not allow for the reduction of early deformation of the surface layers of bituminous pavements in the city of Ouagadougou. Weather conditions combined with traffic, particularly during heat waves, are factors. The temperature at the surface of the bituminous pavement can reach 62˚C but the complex modulus associated with this temperature is not taken into account in the design, hence the interest in proposing laws of dependence of the complex moduli is taken into account in the maximum temperatures of the pavement surface. The objective of this paper is to propose an experimental method to determine the temperature dependence of the complex moduli of asphalt mixes for temperatures between 40˚C and 70˚C. This experimental method consists of performing axial compression tests on cylindrical asphalt specimens. It was applied to three different formulas of bituminous mixes, intended for the wearing course, obtained from mixes of crushed granites, granular classes 6/10, 4/6 and 0/4, pure bitumens of grade 50/70, 35/50 and modified bitumen of grade 10/65. The comparative study of the experimental results obtained with the results of a semi-empirical methodology revealed a root mean square deviation from the mean of between 6.58% and 14.8% of the norms of the complex moduli (modulus of rigidity) of the asphalt mixes for a fixed frequency of solicitations of 10 Hz. The consistency of these results with data from the literature led to the initial conclusion that asphalt mixes formulated with 35/50 and 10/65 bitumen would have better compressive strength than those formulated with 50/70 bitumen, for exposure temperatures between 40˚C and 70˚C. This experimental approach could be an alternative to the complex modulus test for determining the modulus of rigidity for design purposes under real pavement exposure conditions in the city of Ouagadougou during heat waves.展开更多
The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperatu...The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.展开更多
The fatigue behavior, indirect tensile strength (ITS) and resilient modulus test results for warm mix asphalt (WMA) as well as hot mix asphalt (HMA) at different ageing levels were evaluated. Laboratory-prepared...The fatigue behavior, indirect tensile strength (ITS) and resilient modulus test results for warm mix asphalt (WMA) as well as hot mix asphalt (HMA) at different ageing levels were evaluated. Laboratory-prepared samples were aged artificially in the oven to simulate short-term and long term ageing in accordance with AASHTO R30 and then compared with unaged specimens. Beam fatigue testing was performed using beam specimens at 25 ℃ based on AASHTO T321 standard. Fatigue life, bending stiffness and dissipated energy for both unaged and aged mixtures were calculated using four-point beam fatigue test results. Three-point bending tests were performed using semi-circular bend (SCB) specimens at -10 ℃ and the critical mode I stress intensity factor K1 was then calculated using the peak load obtained from the load-displacement curve. It is observed that Sasobit and Rheofalt warm mix asphalt additives have a significant effect on indirect tensile strength, resilient modulus, fatigue behavior and stress intensity factor of aged and unaged mixtures.展开更多
This paper presented the methods of reducing the compaction segregation of asphalt layer by improving the operating characteristics of roller and paver. The fit formula, which expresses the compaction rule of the pavi...This paper presented the methods of reducing the compaction segregation of asphalt layer by improving the operating characteristics of roller and paver. The fit formula, which expresses the compaction rule of the paving layer after passing different rolling passes of the steel wheel roller, was also put forward. The measured results of test road show that when some technical methods are adopted, the compaction segregation can be controlled.展开更多
The quality of compaction is important to the performance of hot mixed asphalt (HMA) pavement. Most premature failures of asphalt pavement are concerned with poor compaction. Compaction characteristic of lIMA mixtur...The quality of compaction is important to the performance of hot mixed asphalt (HMA) pavement. Most premature failures of asphalt pavement are concerned with poor compaction. Compaction characteristic of lIMA mixtures were studied. Compaction tests were done with typical widely used HMA mixtures, including dense gradation asphalt mixtures with different nominal maximum aggregate size (AC13,AC20,AC25), and mixtures with different gradation (AC13, SMA13,Supl3 and OGFC13). HMA mixtures were sampled at different compaction temperature and Marshall blow numbers, varying between 60 and 175 ~C and between 15 and 75 lows, respectively. The compaction characteristics of these mixtures were evaluated. The results showed that the Marshall stability and volumetric properties were significantly affected by the compaction temperature. Mixtures with the same NMAS but different type of gradation need different compaction energy to get the designed density.展开更多
By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture c...By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.展开更多
Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtu...Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were signifi cantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the fi rst period when the specimen's initial stiffness modulus was reduced to 80% accounted for 5%-10% of the total fatigue life; the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85% of the fatigue life; and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture展开更多
Within the past two decades or so, the asphalt paving industry has responded positively to increasing global concerns over shrinking natural resource reserves and worsening environmental conditions through the develop...Within the past two decades or so, the asphalt paving industry has responded positively to increasing global concerns over shrinking natural resource reserves and worsening environmental conditions through the development and deployment of warm-mix asphalt technologies. Such technologies make it possible to produce and place asphalt concrete at reduced temperatures compared to conventional hot-mix methods. Several studies have reported on the potential of warm-mix asphalt with regard to improved pavement performance, efficiency and environmental stewardship. This paper reviews several of those studies in the context of pavement sustainability. Overall, warm-mix asphalt provides substantial sustainability benefits similar to or, in some cases, better than conventional hot-mix asphalt. Sustainability benefits include lower energy use, reduced emissions, and potential for increased reclaimed asphalt pavement usage. Growth in utilization of warm-mix asphalt worldwide may, in the not-too-distant future, make the material the standard for asphalt paving. Regardless, there are concerns over some aspects of warm-mix asphalt such as lower resistance to fatigue cracking, rutting and potential water-susceptibility problems, particularly with mixes prepared with water-based technologies, which require further research to address.展开更多
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
文摘Nano silica due to its spherical shape, tiny size and higher density compared to bitumen, may have an inherent potential to improve hot mix asphalt(HMA) self-healing. In this research scanning electron microscopy(SEM) images were used to investigate size, morphology and dispersion of nano silica particles. Additionally, HMA self-healing mechanism was also examined by SEM. Furthermore, dynamic indirect tensile test(IDT) was used to evaluate HMA self-healing index. The SEM results indicated that bitumen mortar flowing into micro cracks may be one of the most important mechanisms of HMA self-healing. The experiment results also showed that modification of bitumen by nano silica promotes the ability of the HMA self-healing.
文摘This paper studies the effect of different environmental factors, including the axle load weight, environmental temperature, vehicle speed, and the aging level of asphalt, on the fatigue performance of asphalt mixes based on four-point bending beam fatigue tests. A fractional factorial design method named "uniform design" was applied in experimental design. The relations of the environmental factors to initial stiffness, fatigue life, phase angle and cumulative dissipated energy were established with the general linear modeling method. It is found that there exists very good correlativity between the environmental factors and the fatigue performance indices of asphalt mixes. The coefficients of total correlation are mainly beyond 0. 95. The results indicate that the consideration of the effect of environmental factors is necessary in the fatigue performance evaluation on real asphalt pavement.
文摘In areas where hot mix asphalt(HMA)is likely to be exposed by any form of mineral oil the layer has to withstand the attack of these substances in order not to damage the construction.The European Standard EN 12697-43 provides a test procedure to determine the resistance of HMA to fuel.The paper reviews this method thoroughly.A completely revised and simplified test device for the brush test was developed meeting the requirements of the standard and creating results with a high repeatability at the same time.The test conditions given by the standard such as the exposure to fuel,cleaning of the specimen after exposure or the contact pressure of the brush were varied to isolate those test conditions with a substantial influence on the result.The research revealed that in the standard some conditions with a rather small influence are set quite strictly while other conditions with a distinct influence on the result are not defined with the required accuracy to obtain comparable and repeatable results.The paper presents suggestions for the improvement of the test method and the standard itself in respect to the layout of the test device and the definition of important test conditions to enhance the outcome of the EN 12697-43.
文摘With the continuous development of domestic highway construction,highway civil engineering and service level quality have attracted much attention.Good pavement quality and high-quality service make people feel comfortable and smooth when traveling.High-quality pavement can significantly reduce the probability of traffic accidents.At present,there is a direct relationship between pavement quality and pavement construction operations.Carrying out pavement construction operations in cold high-altitude areas requires a reasonable selection of construction equipment and methods.The application of warm-mix asphalt pavement construction technology can ensure pavement quality.Therefore,this paper analyzes the advantages of warm-mix technology,the environmental characteristics of cold high-altitude areas,and construction preparations,and discusses the construction technology of warm-mix asphalt pavement in cold high-altitude areas in detail,to improve the overall road quality of cold high-altitude areas.
文摘Current pavement design methods do not allow for the reduction of early deformation of the surface layers of bituminous pavements in the city of Ouagadougou. Weather conditions combined with traffic, particularly during heat waves, are factors. The temperature at the surface of the bituminous pavement can reach 62˚C but the complex modulus associated with this temperature is not taken into account in the design, hence the interest in proposing laws of dependence of the complex moduli is taken into account in the maximum temperatures of the pavement surface. The objective of this paper is to propose an experimental method to determine the temperature dependence of the complex moduli of asphalt mixes for temperatures between 40˚C and 70˚C. This experimental method consists of performing axial compression tests on cylindrical asphalt specimens. It was applied to three different formulas of bituminous mixes, intended for the wearing course, obtained from mixes of crushed granites, granular classes 6/10, 4/6 and 0/4, pure bitumens of grade 50/70, 35/50 and modified bitumen of grade 10/65. The comparative study of the experimental results obtained with the results of a semi-empirical methodology revealed a root mean square deviation from the mean of between 6.58% and 14.8% of the norms of the complex moduli (modulus of rigidity) of the asphalt mixes for a fixed frequency of solicitations of 10 Hz. The consistency of these results with data from the literature led to the initial conclusion that asphalt mixes formulated with 35/50 and 10/65 bitumen would have better compressive strength than those formulated with 50/70 bitumen, for exposure temperatures between 40˚C and 70˚C. This experimental approach could be an alternative to the complex modulus test for determining the modulus of rigidity for design purposes under real pavement exposure conditions in the city of Ouagadougou during heat waves.
基金The National Natural Science Foundation of China(No.51408043)the Natural Science Foundation of Shaanxi Province(No.2014JQ7278)
文摘The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.
文摘The fatigue behavior, indirect tensile strength (ITS) and resilient modulus test results for warm mix asphalt (WMA) as well as hot mix asphalt (HMA) at different ageing levels were evaluated. Laboratory-prepared samples were aged artificially in the oven to simulate short-term and long term ageing in accordance with AASHTO R30 and then compared with unaged specimens. Beam fatigue testing was performed using beam specimens at 25 ℃ based on AASHTO T321 standard. Fatigue life, bending stiffness and dissipated energy for both unaged and aged mixtures were calculated using four-point beam fatigue test results. Three-point bending tests were performed using semi-circular bend (SCB) specimens at -10 ℃ and the critical mode I stress intensity factor K1 was then calculated using the peak load obtained from the load-displacement curve. It is observed that Sasobit and Rheofalt warm mix asphalt additives have a significant effect on indirect tensile strength, resilient modulus, fatigue behavior and stress intensity factor of aged and unaged mixtures.
文摘This paper presented the methods of reducing the compaction segregation of asphalt layer by improving the operating characteristics of roller and paver. The fit formula, which expresses the compaction rule of the paving layer after passing different rolling passes of the steel wheel roller, was also put forward. The measured results of test road show that when some technical methods are adopted, the compaction segregation can be controlled.
基金Funded by the National Natural Science Foundation of China(No.51108081)SRF for ROCS,SEM,and Xuzhou Science Bureau(No.1016)
文摘The quality of compaction is important to the performance of hot mixed asphalt (HMA) pavement. Most premature failures of asphalt pavement are concerned with poor compaction. Compaction characteristic of lIMA mixtures were studied. Compaction tests were done with typical widely used HMA mixtures, including dense gradation asphalt mixtures with different nominal maximum aggregate size (AC13,AC20,AC25), and mixtures with different gradation (AC13, SMA13,Supl3 and OGFC13). HMA mixtures were sampled at different compaction temperature and Marshall blow numbers, varying between 60 and 175 ~C and between 15 and 75 lows, respectively. The compaction characteristics of these mixtures were evaluated. The results showed that the Marshall stability and volumetric properties were significantly affected by the compaction temperature. Mixtures with the same NMAS but different type of gradation need different compaction energy to get the designed density.
文摘By indirect tensile strength (ITS) test and unconfined compressive strength (UCS) test, the influence of various material related parameters, including asphalt foamability, aggregate temperature, mixing moisture content (MMC) and foamed asphalt (FA) content, on the mechanical properties of FA mixes was studied. The results indicated that both asphalt foamability and aggregate temperature greatly affected ITS of FA mixes. Too low aggregate temperature was unfavorable for mechanical properties of FA mixes. Foamed index alone was unfit for the evaluation of asphalt foamability. Compared with half-life, expansion ratio had more prominent influence on ITS of FA mixes. MMC had significant impact on the mechanical properties of FA mixes and should be optimized by trial and test in FA mix design. The mechanical properties of FA mix were sensitive to the change of FA content. Compared with the ITS determined with standard Marshall specimens, both the ITS and UCS determined with static compressed specimens by 15 cm diameter were more effective in terms of choosing the optimal asphalt content for FA mixes.
基金Funded by the National Natural Science Foundation of China(No.51202214)
文摘Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a straincontrolled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were signifi cantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the fi rst period when the specimen's initial stiffness modulus was reduced to 80% accounted for 5%-10% of the total fatigue life; the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85% of the fatigue life; and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture
文摘Within the past two decades or so, the asphalt paving industry has responded positively to increasing global concerns over shrinking natural resource reserves and worsening environmental conditions through the development and deployment of warm-mix asphalt technologies. Such technologies make it possible to produce and place asphalt concrete at reduced temperatures compared to conventional hot-mix methods. Several studies have reported on the potential of warm-mix asphalt with regard to improved pavement performance, efficiency and environmental stewardship. This paper reviews several of those studies in the context of pavement sustainability. Overall, warm-mix asphalt provides substantial sustainability benefits similar to or, in some cases, better than conventional hot-mix asphalt. Sustainability benefits include lower energy use, reduced emissions, and potential for increased reclaimed asphalt pavement usage. Growth in utilization of warm-mix asphalt worldwide may, in the not-too-distant future, make the material the standard for asphalt paving. Regardless, there are concerns over some aspects of warm-mix asphalt such as lower resistance to fatigue cracking, rutting and potential water-susceptibility problems, particularly with mixes prepared with water-based technologies, which require further research to address.
基金The National Science Foundation of China (No.52078190)the Natural Science Foundation of Jiangsu Province (No.BK20221501)+1 种基金the Natural Science Youth Fund of Jiangsu Province(No.BK20220983)the Natural Science Foundation of Hebei Province(No.E2019203559)。