A new flexible substrate for flexible electronics has been developed. The developed substrate consists of an ultra thin glass and TAC (triacethyl cellulose) film. An ultra thin glass and TAC film were joined with TEOS...A new flexible substrate for flexible electronics has been developed. The developed substrate consists of an ultra thin glass and TAC (triacethyl cellulose) film. An ultra thin glass and TAC film were joined with TEOS-DAC (TEOS: tetraethyl orthosilicate, DAC: diacethy cellulose) adhesive resin synthesized by sol-gel method by means of thermo-compression bonding. This substrate has high transparency in visible-light region (90%), high flexibility (torsion strength and bending strength) and high gas barrier characteristics due to an ultra thin glass. The newly-developed substrate is superior to the substrates fabricated with commercially available adhesive resin in the same way in characteristics of heat resistance, transparency and flexibility.展开更多
The electronic structure of Pd-Y-Si glass has been investigated by ESCA and quantum chem- ical calculation.It was found that the valence electrons of Y transferred to Si atoms in this metallic glass,forming polar cova...The electronic structure of Pd-Y-Si glass has been investigated by ESCA and quantum chem- ical calculation.It was found that the valence electrons of Y transferred to Si atoms in this metallic glass,forming polar covalent bonds.Perhaps these strong covalent bonds link Si and Y atoms to form clusters that hinder the process of crystallization.展开更多
To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measu...To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe^3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+species to Fe^2+species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe^3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.展开更多
The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on th...The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few tens of nanometers and the corresponding increase of network polymerization on the top surface are observed after electron bombardment, while the polymerization in the subsurface region has a negligible variation with the irradiation dose. Moreover, the formation of molecular oxygen after electron irradiation is evidenced, which is mainly aggregated in the first two-micron-thick irradiated glass surface. These modifications are correlated to the network relaxation process as a consequence of the diffusion and desorption of sodium species during electron irradiation.展开更多
Glasses of BaO-SrO-TiO2-SiO2 after electronic radiation treatment of 50 - 1000 kgy were studied by means of IR spectra, DTA and visible light absorption method. The result shows that the glass structure is changed due...Glasses of BaO-SrO-TiO2-SiO2 after electronic radiation treatment of 50 - 1000 kgy were studied by means of IR spectra, DTA and visible light absorption method. The result shows that the glass structure is changed due to the formation of structure defect from oxygen vacancy and E’ color center, which resultsd in the crystallization process and new precursors, and decreasement of Tg temperature and crystallization peaks by 20 -50℃.展开更多
Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of d...Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Harniltonian parameters obtained from room temperature EPR spectra are: gli=2.437, 9⊥=2.096, A‖=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g‖=2.441, g⊥=2.088, A‖=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2and g‖=2.433,g⊥=2.096, A‖=125×10 4cm-1, A⊥=32×10-4cm-1 for LiNaCdP3. TheseEPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.展开更多
This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 ...This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 keV, the intrinsic SEE yields measured at very low injection dose are 0.54, 0.29 and 0.35, respectively for lead silica, Suprasil and Infrasil silica glass. During the first e-beam irradiation at a high injection current density, the SEE yields of lead silica and Suprasil increase continuously and slowly from their initial values to a steady state. At the steady state, the SEE yields of lead silica and Suprasil are 0.94 and 0.93, respectively. In Infrasil, several charging and discharging processes are observed during the experiment. This shows that Infrasil does not reach its steady state. Two hours later, all samples are irradiated again in the same place as the first irradiation at a low current density and low dose. The SEE yields of lead silica, Suprasil and Infrasil are 0.69, 0.76 and 0.55, respectively. Twenty hours later, the values are 0.62, 0.64 and 0.33, respectively, for lead silica, Suprasil and Infrasil. These results show that Infrasil has poor charging stability. Comparatively, the charging stability of lead silica is better, and Suprasil has the best characteristics.展开更多
The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential futu...The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.展开更多
The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,t...The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced.展开更多
The introduction of metals into vitreous matrices is the origin of various interesting phenomena;in particular,the presence of copper ions in glass has been the subject of considerable research because of its numerous...The introduction of metals into vitreous matrices is the origin of various interesting phenomena;in particular,the presence of copper ions in glass has been the subject of considerable research because of its numerous applications.The ion-exchange process is primarily used to introduce copper ions into glass matrices.The thermoluminescence(TL)of silicate glass was studied to evaluate its potential as gamma-sensitive material for dosimetric applications;the effect of copper doping on the thermoluminescent sensitivity was investigated using the Cu-Na ion-exchange technique for different concentrations and doping conditions,over a wide dose range of 10 mGy to 100 kGy.The results showed that Cu doping significantly improved the sensitivity of the glasses to gamma radiation.After the ion-exchange,two peaks appeared in the glow curves at approximately 175 and 230°C,respectively,which possibly originated from the Cu^(+) centers,along with a weak TL peak at around 320℃.We also attempted to explain the origin of the observed thermoluminescence by exploiting the Electron paramagnetic resonance(EPR)spectra.The results clearly show quenching of the TL emission with increasing copper concentrations.The present work indicates that the thermoluminescence response of these glasses to gamma rays can be reasonably measured in the range of 0.001-100 kGy.This study also facilitates the understanding of the basic TL mechanism in this glass system.展开更多
The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12B...The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.展开更多
文摘A new flexible substrate for flexible electronics has been developed. The developed substrate consists of an ultra thin glass and TAC (triacethyl cellulose) film. An ultra thin glass and TAC film were joined with TEOS-DAC (TEOS: tetraethyl orthosilicate, DAC: diacethy cellulose) adhesive resin synthesized by sol-gel method by means of thermo-compression bonding. This substrate has high transparency in visible-light region (90%), high flexibility (torsion strength and bending strength) and high gas barrier characteristics due to an ultra thin glass. The newly-developed substrate is superior to the substrates fabricated with commercially available adhesive resin in the same way in characteristics of heat resistance, transparency and flexibility.
文摘The electronic structure of Pd-Y-Si glass has been investigated by ESCA and quantum chem- ical calculation.It was found that the valence electrons of Y transferred to Si atoms in this metallic glass,forming polar covalent bonds.Perhaps these strong covalent bonds link Si and Y atoms to form clusters that hinder the process of crystallization.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.lzujbky-2014-16)
文摘To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet(UV) optical absorption(OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond(E'-center) and Fe^3+species,respectively. The existence of Fe3+was confirmed by electron paramagnetic resonance(EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E'-center did not change in the deep ultraviolet(DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+species to Fe^2+species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+species is calculated to be 2.2 times larger than that of Fe^3+species. Peroxy linkage(POL, ≡Si–O–O–Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si–O bond break but from Si–O–B bond, Si–O–Al bond, or Si–O–Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band.
文摘The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few tens of nanometers and the corresponding increase of network polymerization on the top surface are observed after electron bombardment, while the polymerization in the subsurface region has a negligible variation with the irradiation dose. Moreover, the formation of molecular oxygen after electron irradiation is evidenced, which is mainly aggregated in the first two-micron-thick irradiated glass surface. These modifications are correlated to the network relaxation process as a consequence of the diffusion and desorption of sodium species during electron irradiation.
基金Funded by Natural Science Foundation of China ( No. E020201-59972028)
文摘Glasses of BaO-SrO-TiO2-SiO2 after electronic radiation treatment of 50 - 1000 kgy were studied by means of IR spectra, DTA and visible light absorption method. The result shows that the glass structure is changed due to the formation of structure defect from oxygen vacancy and E’ color center, which resultsd in the crystallization process and new precursors, and decreasement of Tg temperature and crystallization peaks by 20 -50℃.
文摘Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Harniltonian parameters obtained from room temperature EPR spectra are: gli=2.437, 9⊥=2.096, A‖=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g‖=2.441, g⊥=2.088, A‖=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2and g‖=2.433,g⊥=2.096, A‖=125×10 4cm-1, A⊥=32×10-4cm-1 for LiNaCdP3. TheseEPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.
基金supported by the European Commission in the framework of the GLAMOROUS contract (ref. IST2000-28366)
文摘This paper reports that the charging properties of lead silica, Suprasil silica and Infrasil silica are investigated by measuring the secondary electron emission (SEE) yield. At a primary electron beam energy of 25 keV, the intrinsic SEE yields measured at very low injection dose are 0.54, 0.29 and 0.35, respectively for lead silica, Suprasil and Infrasil silica glass. During the first e-beam irradiation at a high injection current density, the SEE yields of lead silica and Suprasil increase continuously and slowly from their initial values to a steady state. At the steady state, the SEE yields of lead silica and Suprasil are 0.94 and 0.93, respectively. In Infrasil, several charging and discharging processes are observed during the experiment. This shows that Infrasil does not reach its steady state. Two hours later, all samples are irradiated again in the same place as the first irradiation at a low current density and low dose. The SEE yields of lead silica, Suprasil and Infrasil are 0.69, 0.76 and 0.55, respectively. Twenty hours later, the values are 0.62, 0.64 and 0.33, respectively, for lead silica, Suprasil and Infrasil. These results show that Infrasil has poor charging stability. Comparatively, the charging stability of lead silica is better, and Suprasil has the best characteristics.
文摘The electronic excitation temperature in a direct current positive streamer discharge based on ultra-thin sheet electrodes was measured by optical emission spectrometry in order to deposit materials for potential future applications. It was remarkable that the electronic excitation temperature (Text) did not vary monotonically with the discharge current, but demonstrated a peak at a certain position. In a mixture of oxygen and argon (80% oxygen), the maximum Texc reached about 6300 K at an average current of 600 pA. Both the positive ions accumulation in the discharge region and the increase of the local temperature around the streamer channel caused by Joule heating are considered to be the main reasons for the variations of Texc.
基金the National Key Research and Development Program of China(No.2022YFB3603300)。
文摘The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced.
文摘The introduction of metals into vitreous matrices is the origin of various interesting phenomena;in particular,the presence of copper ions in glass has been the subject of considerable research because of its numerous applications.The ion-exchange process is primarily used to introduce copper ions into glass matrices.The thermoluminescence(TL)of silicate glass was studied to evaluate its potential as gamma-sensitive material for dosimetric applications;the effect of copper doping on the thermoluminescent sensitivity was investigated using the Cu-Na ion-exchange technique for different concentrations and doping conditions,over a wide dose range of 10 mGy to 100 kGy.The results showed that Cu doping significantly improved the sensitivity of the glasses to gamma radiation.After the ion-exchange,two peaks appeared in the glow curves at approximately 175 and 230°C,respectively,which possibly originated from the Cu^(+) centers,along with a weak TL peak at around 320℃.We also attempted to explain the origin of the observed thermoluminescence by exploiting the Electron paramagnetic resonance(EPR)spectra.The results clearly show quenching of the TL emission with increasing copper concentrations.The present work indicates that the thermoluminescence response of these glasses to gamma rays can be reasonably measured in the range of 0.001-100 kGy.This study also facilitates the understanding of the basic TL mechanism in this glass system.
基金Project(11374028)supported by the National Natural Science Foundation of ChinaProject supported by the Cheung Kong Scholars Program of China
文摘The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.