In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with an...In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.展开更多
In conventional grinding theory, the chief removed mode of ceramic coprocessor by diamond tools was brittle removal. In order to perform the plastic removal or ductility processing of engineering ceramics the high deg...In conventional grinding theory, the chief removed mode of ceramic coprocessor by diamond tools was brittle removal. In order to perform the plastic removal or ductility processing of engineering ceramics the high degree of accuracy and high rigidity grinner must be using micro grain size diamond grinding wheel to direct the processing of micron below rank depth to prevent form the occurring of the brittle processing zone. This will resulted in the high expense of grinding. The expense of grinding could even reach the 80% of the total manufacture cost of the ceramic part. Ultra-precision grinding for advanced ceramics has been achieved by the unsteady-state grinding technique. In this paper, we mainly deals with observing and analyzing the surface quality of the silicon nitride ground by pink fused alumina wheel in different grinding parameters. To optimize the grinding parameters in the process of the unsteady-state grinding, the experiments of X-ray diffraction, energy spectrum analysis, SEM observation and roughness measurement were performed. The results show that: 1. In the process of unsteady state grinding, high line speed (rotational speed) of the grind wheel can improve the roughness of the silicon nitride apparently. It was also evident that the larger the grain mesh size, the better the surface quality. 2. There exists an optimum combination of grinding conditions such as grinding wheel speed, rotational speed of the workpiece, feed rate between the grinding wheel and the workpiece, grinding times and cutting coolant. The surface quality of the silicon nitride can be up to the standard of mirror finishing. 3. By analyzing the finished surface with X-ray diffraction and energy spectrum, the existence of some new phases including titanium and alumina was proved. 4. By utilizing the unsteady state grinding technique, the surface roughness of Ra ≤ 0.030 μm can be achieved by grinding the silicon nitride with the pink fused alumina wheel in low cost. Based on the unsteady-state grinding technique, this paper put forward a new processing method which by utilizing aluminum oxide grinding wheel to perform burnishing process and impudent the low surface roughness processing of engineering ceramic, the Ra is about 0.01 μm. Furthermore, the working efficiency of this method is high, and the process cost is low, so it is a prospective processing method.展开更多
Grinding operation is a finishing process often employed when high precision and narrow geometric tolerances are required.These requirements can be achieved only if cutting conditions are properly selected,especially ...Grinding operation is a finishing process often employed when high precision and narrow geometric tolerances are required.These requirements can be achieved only if cutting conditions are properly selected,especially the cooling-lubrication technique.In general,grinding is performed in presence of cutting fluid,however,due to the environmental impacts and costs of the conventional coolant delivery technique(flow rates from 4 L/min to 300 L/min),alternative cooling-lubrication techniques have been developed on restriction of the coolants use.Among the several techniques,MQL(minimum quantity of lubricant)technique has received special attention from machining users because of its advantages in terms of surface quality of workpiece and drastic reduction in use of coolant.In this context,this paper evaluated the performance of the MQL technique as compared to the flood coolant in peripheral surface grinding of AISI P100(VP100)steel with conventional aluminum oxide grinding wheel in relation to the surface roughness(Ra and Rz).Input parameters tested were equivalent chip thickness(0.09μm,0.18μm and 0.27μm)and flow rate of the cutting fluid(60 mL/h,150 mL/h and 240 mL/h)of the MQL system.Results showed that the grinding with MQL technique provided lower surface roughness values compared to conventional flood cooling,especially when machining under the intermediary cutting conditions.Also,with exception of heq of 0.09 m,the MQL technique resulted in lower values of Rz parameter as compared to the conventional coolant technique,regardless of the flow rate tested.展开更多
Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and ...Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and impact the surface roughness of workpiece.However,previous studies used iterative method to calculate the unformed chip thickness(UCT),which has low computational efficiency.In this study,a symbolic difference method is proposed to calculate the UCT.The UCT distributions are obtained to describe the stochastic interaction characteristics of ultrasonic grinding process.Meanwhile,the UCT distribution characteristics under different machining parameters are analyzed.Then,a surface roughness prediction model is established based on the UCT distribution.Finally,the correctness of the model is verified by experiments.This study provides a quick and accurate method for predicting surface roughness in longitudinal ultrasonic vibration grinding.展开更多
The surface quality of chamfer milling of stainless steel is closed related to the products of 3 C(Computer, Communication and Consumer electronics), where a cutter is a major part to achieve that. Targeting a high-qu...The surface quality of chamfer milling of stainless steel is closed related to the products of 3 C(Computer, Communication and Consumer electronics), where a cutter is a major part to achieve that. Targeting a high-quality cutter,an experimental evaluation is carried out on the influence of grinding texture of cutter flank face on surface quality.The mathematic models of chamfer cutter are established, and they are validated by a numerical simulation. Also the grinding data are generated by the models and tested by a grinding simulation for safety reasons. Then, a set of chamfer cutting tools are machined in a five-axis CNC grinding machine, and consist of five angles between the cutting edge and the grinding texture on the 1 st flank faces, i.e., 0°, 15°, 30°, 45° and 60°. Furthermore, the machined cutting tools are tested in a series of milling experiments of chamfer hole of stainless steel, where cutting forces and surface morphologies are measured and observed. The results show that the best state of both surface quality and cutting force is archived by the tool with 45° grinding texture, which can provide a support for manufacturing of cutting tool used in chamfer milling.展开更多
The ground surface quality of Cr 2O 3 coatings is investigated in this paper. The influence of some typical grinding parameters on ground surface integrity is discussed in detail. It is found that the ground surface r...The ground surface quality of Cr 2O 3 coatings is investigated in this paper. The influence of some typical grinding parameters on ground surface integrity is discussed in detail. It is found that the ground surface roughness increases with the increase of depth-of-cut. The surface finish is improved as the increase of grinding speed, but too high grinding speed may result in serious vibration of the system. The increase of workpiece speed causes deterioration of surface finish and produces big grinding noise. Experiments on plateau treatment after the rough ground surface were also carried out. The surface profile of the ground surface after plateau treatment becomes much smoother than the former rough surface. Some sharp peaks on the ground surface may be effectively removed by the plateau treatment, which produces a reasonable surface profile and can stand much more load. Surface observations and analyses show that plastic deformation and micro-cracks occur on the ground surface. The material removal process is primarily a serious of localized surface fractures accompanied by multi-plastic deformations. Much more plastic deformation and micro-cracks emerge on the ground surface when the depth-of-cut increases. The increase of workpiece speed may produce more surface micro-cracks, but the relative increase of grinding speed is beneficial to ground surface quality.展开更多
Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surf...Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles.展开更多
In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels we...In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.展开更多
Subsurface damage(SSD) is an unavoidable problem in the precision mechanical grinding for preparing ultra-thin and flexible silicon chips. At present, there are relatively few studies on the relationship between SSD a...Subsurface damage(SSD) is an unavoidable problem in the precision mechanical grinding for preparing ultra-thin and flexible silicon chips. At present, there are relatively few studies on the relationship between SSD and the bending strength of ultra-thin chips under different grinding parameters. In this study, SSD including amorphization and dislocation is observed using a transmission electron microscope. Theoretical predictions of the SSD depth induced by different processing parameters are in good agreement with experimental data. The main reasons for SSD depth increase include the increase of grit size, the acceleration of feed rate, and the slowdown of wheel rotation speed. Three-point bending test is adopted to measure the bending strength of ultra-thin chips processed by different grinding conditions. The results show that increasing wheel rotation speed and decreasing grit size and feed rate will improve the bending strength of chips, due to the reduction of SSD depth. Wet etching and chemical mechanical polishing(CMP) are applied respectively to remove the SSD induced by grinding, and both contribute to providing a higher bending strength, but in comparison, CMP works better due to a smooth surface profile. This research aims to provide some guidance for optimizing the grinding process and fabricating ultra-thin chips with higher bending strength.展开更多
Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding w...Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance,the chip storage capability of the working layers and the stability and controllability of the dressing process.Therefore,in this work,novel metallic cBN superabrasive wheels with aggregated cBN(AcBN)grains and open pore structures were fabricated to improve machining efficiency and surface quality.Prior to the grinding trials,the airborne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials.Subsequently,the comparative experiments were performed and then the variations in grinding force and force ratio,grinding temperature,tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti-6Al-4V alloys.In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes,the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60#and the abrasive blasting distance and time of 60 mm and 15 s,respectively.The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN(McBN)grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains.The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.展开更多
In this study, liquid nitrogen was applied to grind SiCp/Al composites with high volume fraction and large SiC particle at different levels of cutting conditions, and the effects of grinding depth and speed on grindin...In this study, liquid nitrogen was applied to grind SiCp/Al composites with high volume fraction and large SiC particle at different levels of cutting conditions, and the effects of grinding depth and speed on grinding force, surface morphology, and surface roughness were investigated. At the same time, the effect of cryogenic cooling was also compared with that of conventional wet grinding. The experimental results indicated that cryogenic cooling is effective in enhancing supporting function of Al matrix to the SiC particles and improving surface quality. Additionally, the brittle fracture of SiC particles was suppressed and some ductile streaks on SiC particle could be observed.展开更多
基金Jiangsu Natural Science Fund of China (BK2001048)
文摘In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.
文摘In conventional grinding theory, the chief removed mode of ceramic coprocessor by diamond tools was brittle removal. In order to perform the plastic removal or ductility processing of engineering ceramics the high degree of accuracy and high rigidity grinner must be using micro grain size diamond grinding wheel to direct the processing of micron below rank depth to prevent form the occurring of the brittle processing zone. This will resulted in the high expense of grinding. The expense of grinding could even reach the 80% of the total manufacture cost of the ceramic part. Ultra-precision grinding for advanced ceramics has been achieved by the unsteady-state grinding technique. In this paper, we mainly deals with observing and analyzing the surface quality of the silicon nitride ground by pink fused alumina wheel in different grinding parameters. To optimize the grinding parameters in the process of the unsteady-state grinding, the experiments of X-ray diffraction, energy spectrum analysis, SEM observation and roughness measurement were performed. The results show that: 1. In the process of unsteady state grinding, high line speed (rotational speed) of the grind wheel can improve the roughness of the silicon nitride apparently. It was also evident that the larger the grain mesh size, the better the surface quality. 2. There exists an optimum combination of grinding conditions such as grinding wheel speed, rotational speed of the workpiece, feed rate between the grinding wheel and the workpiece, grinding times and cutting coolant. The surface quality of the silicon nitride can be up to the standard of mirror finishing. 3. By analyzing the finished surface with X-ray diffraction and energy spectrum, the existence of some new phases including titanium and alumina was proved. 4. By utilizing the unsteady state grinding technique, the surface roughness of Ra ≤ 0.030 μm can be achieved by grinding the silicon nitride with the pink fused alumina wheel in low cost. Based on the unsteady-state grinding technique, this paper put forward a new processing method which by utilizing aluminum oxide grinding wheel to perform burnishing process and impudent the low surface roughness processing of engineering ceramic, the Ra is about 0.01 μm. Furthermore, the working efficiency of this method is high, and the process cost is low, so it is a prospective processing method.
基金This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil(CAPES)—Finance Code 001The authors are grateful too to the FAPEMIG and the Post Graduate Program of Mechanical Engineering of UFU for financial support.Authors are also grateful to Villares Metals(Brazil)+1 种基金Saint Gobain Abrasives for supporting this work with workpiece material and wheel.One of authors thanks CNPq(PQ 2013 Project No.308067/2013)for the research scholarship and FAPEMIG project process No.PPM-00265-13 for financial supportThe authors are also thankful to ABCM for transferring the copyright of the article.
文摘Grinding operation is a finishing process often employed when high precision and narrow geometric tolerances are required.These requirements can be achieved only if cutting conditions are properly selected,especially the cooling-lubrication technique.In general,grinding is performed in presence of cutting fluid,however,due to the environmental impacts and costs of the conventional coolant delivery technique(flow rates from 4 L/min to 300 L/min),alternative cooling-lubrication techniques have been developed on restriction of the coolants use.Among the several techniques,MQL(minimum quantity of lubricant)technique has received special attention from machining users because of its advantages in terms of surface quality of workpiece and drastic reduction in use of coolant.In this context,this paper evaluated the performance of the MQL technique as compared to the flood coolant in peripheral surface grinding of AISI P100(VP100)steel with conventional aluminum oxide grinding wheel in relation to the surface roughness(Ra and Rz).Input parameters tested were equivalent chip thickness(0.09μm,0.18μm and 0.27μm)and flow rate of the cutting fluid(60 mL/h,150 mL/h and 240 mL/h)of the MQL system.Results showed that the grinding with MQL technique provided lower surface roughness values compared to conventional flood cooling,especially when machining under the intermediary cutting conditions.Also,with exception of heq of 0.09 m,the MQL technique resulted in lower values of Rz parameter as compared to the conventional coolant technique,regardless of the flow rate tested.
基金supported by the National Key Research and Development Program of China(No.2018YFB2000402)the Open Fund Project of Xinchang Research Institute of Zhejiang University of Technology,and the Fundamental Research Funds for the Universities of Henan Province,China(No.NSFRF200102).
文摘Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and impact the surface roughness of workpiece.However,previous studies used iterative method to calculate the unformed chip thickness(UCT),which has low computational efficiency.In this study,a symbolic difference method is proposed to calculate the UCT.The UCT distributions are obtained to describe the stochastic interaction characteristics of ultrasonic grinding process.Meanwhile,the UCT distribution characteristics under different machining parameters are analyzed.Then,a surface roughness prediction model is established based on the UCT distribution.Finally,the correctness of the model is verified by experiments.This study provides a quick and accurate method for predicting surface roughness in longitudinal ultrasonic vibration grinding.
基金Supported by Heilongjiang Provincial Natural Science Foundation of China(Grant No.QC2016070)
文摘The surface quality of chamfer milling of stainless steel is closed related to the products of 3 C(Computer, Communication and Consumer electronics), where a cutter is a major part to achieve that. Targeting a high-quality cutter,an experimental evaluation is carried out on the influence of grinding texture of cutter flank face on surface quality.The mathematic models of chamfer cutter are established, and they are validated by a numerical simulation. Also the grinding data are generated by the models and tested by a grinding simulation for safety reasons. Then, a set of chamfer cutting tools are machined in a five-axis CNC grinding machine, and consist of five angles between the cutting edge and the grinding texture on the 1 st flank faces, i.e., 0°, 15°, 30°, 45° and 60°. Furthermore, the machined cutting tools are tested in a series of milling experiments of chamfer hole of stainless steel, where cutting forces and surface morphologies are measured and observed. The results show that the best state of both surface quality and cutting force is archived by the tool with 45° grinding texture, which can provide a support for manufacturing of cutting tool used in chamfer milling.
文摘The ground surface quality of Cr 2O 3 coatings is investigated in this paper. The influence of some typical grinding parameters on ground surface integrity is discussed in detail. It is found that the ground surface roughness increases with the increase of depth-of-cut. The surface finish is improved as the increase of grinding speed, but too high grinding speed may result in serious vibration of the system. The increase of workpiece speed causes deterioration of surface finish and produces big grinding noise. Experiments on plateau treatment after the rough ground surface were also carried out. The surface profile of the ground surface after plateau treatment becomes much smoother than the former rough surface. Some sharp peaks on the ground surface may be effectively removed by the plateau treatment, which produces a reasonable surface profile and can stand much more load. Surface observations and analyses show that plastic deformation and micro-cracks occur on the ground surface. The material removal process is primarily a serious of localized surface fractures accompanied by multi-plastic deformations. Much more plastic deformation and micro-cracks emerge on the ground surface when the depth-of-cut increases. The increase of workpiece speed may produce more surface micro-cracks, but the relative increase of grinding speed is beneficial to ground surface quality.
基金financial support for this work by the National Natural Science Foundation of China (No. 51775275)the Funding of Jiangsu Innovation Program for Graduate Education of China (KYCX170245)+2 种基金the Funding for Outstanding Doctoral Dissertation in NUAA of China (BCXJ17-04)the Fundamental Research Funds for the Central University of China (No. NP2018110)the National Science and Technology Major Project and the Six Talents Summit Project in Jiangsu Province of China (No.JXQC-002)。
文摘Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775275 and 51921003)National Major Science and Technology Project(Grant No.2017-Ⅶ-0002-0095)+2 种基金Funding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ19-06)the Six Talents Summit Project in Jiangsu Province(Grant No.JXQC-002)Fundamental Research Funds for the Central Universities(Grant No.NP2018110).
文摘In this study,the machined surface quality of powder metallurgy nickel-based superalloy FGH96(similar to Rene88DT)and the grinding characteristics of brown alumina(BA)and microcrystalline alumina(MA)abrasive wheels were comparatively analyzed during creep feed grinding.The infuences of the grinding parameters(abrasive wheel speed,workpiece infeed speed,and depth of cut)on the grinding force,grinding temperature,surface roughness,surface morphology,tool wear,and grinding ratio were analyzed comprehensively.The experimental results showed that there was no significant difference in terms of the machined surface quality and grinding characteristics of FGH96 during grinding with the two types of abrasive wheels.This was mainly because the grinding advantages of the MA wheel were weakened for the difficult-to-cut FGH96 material.Moreover,both the BA and MA abrasive wheeIs exhibited severe tool wear in the form of wheel clogging and workpiece material adhesion.Finally,an analytical model for prediction of the grinding ratio was established by combining the tool wear volume,grinding force,and grinding length.The acceptable errors between the predicted and experimental grinding ratios(ranging from 0.6 to 1.8)were 7.56%and 6.31%for the BA and MA abrasive wheels,respectively.This model can be used to evaluate quantitatively the grinding performance of an alumina abrasive wheel,and is therefore helpful for optimizing the grinding parameters in the creep feed grinding process.
基金supported by the National Natural Science Foundation of China (Grant Nos. U20A6001, 11625207, 11902292, and 11921002)the Zhejiang Province Key Research and Development Project (Grant Nos.2019C05002, 2020C05004, and 2021C01183)。
文摘Subsurface damage(SSD) is an unavoidable problem in the precision mechanical grinding for preparing ultra-thin and flexible silicon chips. At present, there are relatively few studies on the relationship between SSD and the bending strength of ultra-thin chips under different grinding parameters. In this study, SSD including amorphization and dislocation is observed using a transmission electron microscope. Theoretical predictions of the SSD depth induced by different processing parameters are in good agreement with experimental data. The main reasons for SSD depth increase include the increase of grit size, the acceleration of feed rate, and the slowdown of wheel rotation speed. Three-point bending test is adopted to measure the bending strength of ultra-thin chips processed by different grinding conditions. The results show that increasing wheel rotation speed and decreasing grit size and feed rate will improve the bending strength of chips, due to the reduction of SSD depth. Wet etching and chemical mechanical polishing(CMP) are applied respectively to remove the SSD induced by grinding, and both contribute to providing a higher bending strength, but in comparison, CMP works better due to a smooth surface profile. This research aims to provide some guidance for optimizing the grinding process and fabricating ultra-thin chips with higher bending strength.
基金financially supported by the National Natural Science Foundation of China(Nos.51921003,92160301 and 52175415)the Fundamental Research Funds for the Central University(No.NP2022441)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Open Foundation State Key Laboratory of Mechanical Transmissions(No.SKLMT-MSKFKT-202101).
文摘Cubic boron nitride(cBN)superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness,such as titanium alloys and superalloys.However,grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance,the chip storage capability of the working layers and the stability and controllability of the dressing process.Therefore,in this work,novel metallic cBN superabrasive wheels with aggregated cBN(AcBN)grains and open pore structures were fabricated to improve machining efficiency and surface quality.Prior to the grinding trials,the airborne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials.Subsequently,the comparative experiments were performed and then the variations in grinding force and force ratio,grinding temperature,tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti-6Al-4V alloys.In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes,the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60#and the abrasive blasting distance and time of 60 mm and 15 s,respectively.The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN(McBN)grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains.The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.
基金financially supported by the National Natural Science Foundation of China (No.50975184)
文摘In this study, liquid nitrogen was applied to grind SiCp/Al composites with high volume fraction and large SiC particle at different levels of cutting conditions, and the effects of grinding depth and speed on grinding force, surface morphology, and surface roughness were investigated. At the same time, the effect of cryogenic cooling was also compared with that of conventional wet grinding. The experimental results indicated that cryogenic cooling is effective in enhancing supporting function of Al matrix to the SiC particles and improving surface quality. Additionally, the brittle fracture of SiC particles was suppressed and some ductile streaks on SiC particle could be observed.