期刊文献+
共找到7,062篇文章
< 1 2 250 >
每页显示 20 50 100
The thermal analysis of the heat dissipation system of the charging module integrated with ultra-thin heat pipes 被引量:1
1
作者 Tingzhen Ming Xiwang Liao +4 位作者 Tianhao Shi Kui Yin Zhiyi Wang Mohammad Hossein Ahmadi Yongjia Wu 《Energy and Built Environment》 2023年第5期506-515,共10页
Electric vehicles(EV)played an important role fighting greenhouse gas emissions that contributed to global warming.The construction of the charging pile,which was called as the"gas station"of EV,developed ra... Electric vehicles(EV)played an important role fighting greenhouse gas emissions that contributed to global warming.The construction of the charging pile,which was called as the"gas station"of EV,developed rapidly.The charging speed of the charging piles was shorted rapidly,which was a challenge for the heat dissipation system of the charging pile.In order to reduce the operation temperature of the charging pile,this paper proposed a fin and ultra-thin heat pipes(UTHPs)hybrid heat dissipation system for the direct-current(DC)charging pile.The L-shaped ultra-thin flattened heat pipe with ultra-high thermal conductivity was adopted to reduce the spreading thermal resistance.ICEPAK software was used to simulate the temperature and flow profiles of the new design.And various factors that affected the heat dissipation performance of the system were explored.Simulation results showed that the system had excellent heat dissipation capacity and achieved good temperature uniformity.Rather than solely relied on the fans,this new design efficiently dissipated heat with a lower fan load and less energy consumption. 展开更多
关键词 ICEPAK simulation Charging pile heat transfer ultra-thin heat pipe Chip cooling
原文传递
Experimental Investigation on Cooling/Heating Characteristics of Ultra-Thin Micro Heat Pipe for Electric Vehicle Battery Thermal Management 被引量:12
2
作者 Fei-Fei Liu Feng-Chong Lan +1 位作者 Ji-Qing Chen Yi-Gang Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第3期179-188,共10页
Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic ... Due to the heat pipes’ transient conduction,phase change and fluid dynamics during cooling/heating with high frequency charging/discharging of batteries,it is crucial to investigate in depth the experimental dynamic thermal characteristics in such complex heat transfer processes for more accurate thermal analysis and design of a BTMS. In this paper,the use of ultra?thin micro heat pipe(UMHP) for thermal management of a lithium?ion battery pack in EVs is explored by experiments to reveal the cooling/heating characteristics of the UMHP pack. The cooling performance is evaluated under di erent constant discharging and transient heat inputs conditions. And the heating e ciency is assessed under several sub?zero temperatures through heating films with/without UMHPs. Results show that the pro?posed UMHP BTMS with forced convection can keep the maximum temperature of the pack below 40 °C under 1 ~ 3 C discharging,and e ectively reduced the instant temperature increases and minimize the temperature fluctuation of the pack during transient federal urban driving schedule(FUDS) road conditions. Experimental data also indicate that heating films stuck on the fins of UMHPs brought about adequate high heating e ciency comparing with that stuck on the surface of cells under the same heating power,but has more convenient maintenance and less cost for the BTMS. The experimental dynamic temperature characteristics of UMHP which is found to be a high?e cient and low?energy consumption cooling/heating method for BTMSs,can be performed to guide thermal analysis and optimiza?tion of heat pipe BTMSs. 展开更多
关键词 Electric vehicle Lithium?ion battery Thermal management Ultra?thin micro heat pipe
下载PDF
Numerical investigation on the startup performance of high-temperature heat pipes for heat pipe cooled reactor application 被引量:5
3
作者 Yu-Chuan Guo Zi-Lin Su +1 位作者 Ze-Guang Li Kan Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第10期143-155,共13页
A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only des... A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only describes the transient behavior during the startup period,but also reduces the computing resources of the heat pipe cooled reactor simulation in the simplest way.In this study,a simplified model that integrates the two-zone and network models is proposed.In this model,vapor flow in the vapor space,evaporation,and condensation in the vapor–liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe.An experimental system for a high-temperature heat pipe was developed to validate the proposed model.A potassium heat pipe was utilized as the experimental material.Startup experiments were performed with differ-ent heating powers.Compared with the experimental results,the accuracy of the proposed model was verified.Moreover,the proposed model can predict the vapor flow,pressure drop,and temperature drop in the vapor space.As indicated by the analysis results,the essential requirements for successful startup are also determined.The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements.All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state;hence,can act as a basic tool for the heat pipe cooled reactor simulation. 展开更多
关键词 High-temperature heat pipe STARTUP Two-zone model Network model
下载PDF
Decoupled thermal–hydraulic analysis of an air-cooled separated heat pipe for spent fuel pools under natural convection
4
作者 Hui-Lin Xue Jian-Jie Cheng +3 位作者 Wei-Hao Ji Wen-Jin Li Han-Zhong Tao Wei Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期183-197,共15页
An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal ... An investigation of the decoupled thermal–hydraulic analysis of a separated heat pipe spent fuel pool passive cooling system(SFS)is essential for practical engineering applications.Based on the principles of thermal and mass balance,this study decoupled the heat transfer processes in the SFS.In accordance with the decoupling conditions,we modeled the spent fuel pool of the CAP1400 pressurized water reactor in Weihai and used computational fluid dynamics to explore the heat dissipation capacity of the SFS under different air temperatures and wind speeds.The results show that the air-cooled separated heat pipe radiator achieved optimal performance at an air temperature of 10℃ or wind speed of 8 m/s.Fitted equations for the equivalent thermal conductivity of the separated heat pipes with the wind speed and air temperature we obtained according to the thermal resistance network model.This study is instructive for the actual operation of an SFS. 展开更多
关键词 Decoupled analysis Separated heat pipe CAP1400 Finned tube radiator Passive cooling
下载PDF
Effect of the Arrangement of a New-Type of Turbulator Inserts on Heat Pipe Exchanger Performances
5
作者 Ibtisam A.Hasan Wafa Maki 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2749-2759,共11页
This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,3... This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,350 mm is utilized with a solid disk being inserted inside the tube,which consists of three sections,each one containing two slots.The slot is cut at a 45 degree angle toward the inner tube surface,which results in diverging theflow toward the inner hot tube surface in order to enhance the heat transfer process.Air is considered as the workingfluid with Prandtl number 0.71.The Reynolds number spans the interval from 6,000–13,500,which indicates that the consideredflow is turbulent.The heat exchanger performance is studied and analyzed in terms of average Nusselt number.The experimental results show that the Nusselt number value is directly proportional to the increase of the Reynolds number,and the number of turbulators inserts.With the use of three novel turbulators,the heat transfer was about 3.15 times higher than that in the smooth tube and the friction factor was about 1.11. 展开更多
关键词 heat pipe exchanger heat transfer inserts(NT inserts) turbulators(novel turbulators) disk(solid disk)
下载PDF
The Study of Condensation Processes in the Low-Temperature Short Heat Pipes with a Nozzle-Shaped Vapour Channel 被引量:2
6
作者 Arkady V. Seryakov 《Engineering(科研)》 2017年第2期190-240,共51页
The results of researches of condensation processes in the vapour channel similar to the Laval nozzle of short linear heat pipes are presented. Capacitive sensors are additionally installed in cooled top covers of the... The results of researches of condensation processes in the vapour channel similar to the Laval nozzle of short linear heat pipes are presented. Capacitive sensors are additionally installed in cooled top covers of the heat pipes, and electromagnetic pulses were supplied to them from the external generator. At heating the heat pipe evaporator, starting from a certain thermal power threshold value, electromagnetic pulses became modulated. It is related with the formations of the boiling process in the capillary-porous evaporator and large amount of vapour over it. Boiling process results in rapid increase of the pressure under which the average temperature of the evaporator occurs to be less than the boiling temperature of the working fluid under increased pressure. Considering condensation of excess vapour, this leads to repeated initiation and extinction of the boiling process in the evaporator, which reflects in pressure pulsations in the vapour channel. Pressure pulsations cause modulating effect on electromagnetic impulses. Pulsations frequencies are measured as well as their dependence from overheating of the evaporator. Using the capacitive sensors and a special electronic equipment we measured the local thickness of the working fluid at the condensing surface inside the heat pipes. Time-averaged values of the condensate film thickness are measured, depending on the heat load on the capillary-porous evaporator. The measurement error does not exceed 2 × 10–3 mm. It is demonstrated that the condensate film thickness lessens sharply with the increase of the heat load on the evaporator of a Laval-like low-temperature heat pipe, while the heat resistance of the film on the condensing surface reaches 60% of the total heat resistance of heat pipe with the capillary-porous evaporator. 展开更多
关键词 heat pipe Compact Open CAPACITANCE Sensor Thickness of CONDENSATE Film ROTATIONAL Flow
下载PDF
Experimental and Simulation Studies on Cold Welding Sealing Process of Heat Pipes 被引量:4
7
作者 Yong LI Shengle CHEN +2 位作者 Jinlong HUANG Yuying YAN Zhixin ZENG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第2期332-343,共12页
Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bond... Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided. 展开更多
关键词 Cold welding sealing process(CWSP) · Bonding strength · heat pipe · Orthogonal experimen
下载PDF
Localized Theoretical Analysis of Thermal Performance of Individually Finned Heat Pipe Heat Exchanger for Air Conditioning with Freon R404A as Working Fluid
8
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2023年第8期61-85,共17页
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat... This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes. 展开更多
关键词 Individually Finned heat pipe heat Exchanger Thermal Efficiency Thermal Effectiveness Air Conditioning Freon R404A
下载PDF
Analysis of Heat Transfer Performance of Oscillating Heat Pipes Based on a Central Composite Design 被引量:12
9
作者 马永锡 张红 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第2期223-228,共6页
Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and ... Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases. 展开更多
关键词 基于中心复合设计 振荡热管 传热 性能 方差分析
下载PDF
A Numerical Investigation of the Thermal Performances of an Array of Heat Pipes for Battery Thermal Management 被引量:1
10
作者 Chaoyi Wan 《Fluid Dynamics & Materials Processing》 EI 2019年第4期343-356,共14页
A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the inp... A comparative numerical study has been conducted on the thermal performance of a heat pipe cooling system considering several influential factors such as the coolant flow rate,the coolant inlet temperature,and the input power.A comparison between numerical data and results available in the literature has demonstrated that our numerical procedure could successfully predict the heat transfer performance of the considered heat pipe cooling system for a battery.Specific indicators such as temperature,heat flux,and pressure loss were extracted to describe the characteristics of such a system.On the basis of the distributions of the temperature ratio of the battery surface,together with the heat flux and the streamlines around the heat pipe condenser,we conclude that the low disturbance of the coolant is the cause of the temperature gradient along the fluid flow direction. 展开更多
关键词 Battery thermal management heat pipe numerical model temperature difference
下载PDF
Experimental Thermal Performance of Different Capillary Structures for Heat Pipes 被引量:1
11
作者 L.Krambeck G.A.Bartmeyer +3 位作者 D.O.Souza D.Fusão P.H.D.Santos T.Antonini Alves 《Energy Engineering》 EI 2021年第1期1-14,共14页
The temperature control in electronic packaging is the key in numerous applications,to avoid overheating and hardware failure.Due to high capability of heat transfer,good temperature uniformity,and no power consumptio... The temperature control in electronic packaging is the key in numerous applications,to avoid overheating and hardware failure.Due to high capability of heat transfer,good temperature uniformity,and no power consumption,heat pipes can be widely used for heat dissipation of electronic components.This paper reports an experimental thermal analysis of different capillary structures for heat pipes.The wicks considered are metal screens,axial microgrooves,and sintered metal powder.The heat pipes are made of copper,a 200 mm length tube and a 9.45 mm external diameter.Working fluid used was distilled water.The devices are investigated in three positions:0,90,and 270°to the horizontal under powers of 5 up to 45 W.The results show that in horizontal(0°)and with the evaporator under the condenser(270°),the heat pipes showed similar results.Nevertheless,in the reverse condition(the position against the gravity with the evaporator above the condenser,90°),the heat pipe with sintered wick presented the best thermal performance,as it has the lowest thermal resistance and supported a higher power.Besides that,the sintered powder capillary structure demonstrates the most homogeneous thermal behavior for every position,making the most suitable for applications susceptible to diverse inclinations. 展开更多
关键词 heat pipes capillary structure thermal performance sintered wick
下载PDF
Localized Theoretical Analysis of Thermal Performance of Individually Finned Heat Pipe Heat Exchanger for Air Conditioning with Freon R404A as Working Fluid
12
作者 Élcio Nogueira 《Journal of Modern Physics》 2023年第8期61-85,共6页
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat... This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes. 展开更多
关键词 Individually Finned heat pipe heat Exchanger Thermal Efficiency Thermal Effectiveness Air Conditioning Freon R404A
下载PDF
Capillary force of a novel skew-grooved wick structure for micro heat pipes 被引量:2
13
作者 吴菊红 汤勇 陆龙生 《Journal of Central South University》 SCIE EI CAS 2011年第6期2170-2175,共6页
In order to improve the capillary force of grooved wick, a novel skew-grooved wick structure was proposed for micro heat pipes. Risen meniscus experiments were carried out to research the capillary force of the skew-g... In order to improve the capillary force of grooved wick, a novel skew-grooved wick structure was proposed for micro heat pipes. Risen meniscus experiments were carried out to research the capillary force of the skew-grooved and rectangle-grooved wick and a comparison of capillarity between the two wick structures was explored. A theoretical capillary force model of skew-grooved wick structure was also developed to calculate its effective capillary radius by comparing with the rectangle-grooved wick. From the experimental results, the maximum capillary force of the skewed-grooved wick is 8.62% larger than that of the rectangle-grooved wick. From the theoretical analysis, because the skewed-grooved wick has a smaller effective capillary radius, its maximum capillary force is 8.64% larger than that of the rectangle-grooved wick. The results indicate that the skew-grooved wick provides larger capillary force than the rectangle-grooved wick. 展开更多
关键词 毛细力 微热管 沟槽 结构 毛细管半径 矩形槽 毛细管力
下载PDF
Parametric Influence on Thermal Performance of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
14
作者 杨洪海 KHANDEKAR Sameer GROLL Manfred 《Journal of Donghua University(English Edition)》 EI CAS 2006年第3期8-13,共6页
This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section(2×2 mm2, 165 mm long) machined directly on an aluminum plate... This paper presents an experimental study on a flat plate closed loop pulsating heat pipes. It consisted of total 40 channels with square cross section(2×2 mm2, 165 mm long) machined directly on an aluminum plate(180×120×3 mm3), which was covered by a transparent plate. The working fluid employed was ethanol. As the results, the influence parameters of thermal performance were investigated, such as filling ratio, heat load and operational orientations etc. Filling ratio was found to be a critical parameter, and its effect was rather complicated. According to its values the PHP plate could have four distinct working zones with different operational characteristics and heat transfer performance. The effect of heat load on thermal performance was found to be positive, and in general, increasing the heat load would improve heat transfer performance. In order to analyze the effect of gravity on thermal performance, three different heat modes and total seven tilt angles were tested and compared. Successful operation at all orientations with respect to gravity was also achieved. 展开更多
关键词 平板闭环脉动热管 参数影响 热转变特征 PCBS
下载PDF
Investigation of Geometric Factors of Convex Platforms in the Flat Evaporator of Loop Heat Pipes
15
作者 Ge Zhang Wenshuai Miao +2 位作者 Li Liu Yingying Hong Jiao Bai 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第6期90-96,共7页
This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat tr... This paper investigated the influence of geometric factors of vapor groove structures on the performance of flat evaporator of a loop heat pipe system. COMSOL multiphysics software was employed to simulate the heat transfer in the evaporator with convex platforms of different shapes,sizes and area ratios(φ)between convex platforms and the heated surface. The maximum temperature and temperature distribution of each model were obtained. The results showed that the decrease of the size of platforms and the increase of φ can lower temperatures and improve temperature distribution homogeneity of the heated surface. Compared with circle and oval platforms,square platforms achieved lower temperature. The results also indicated that φ had the most significant impact on the performance of the evaporator. 展开更多
关键词 loop heat pipe FLAT EVAPORATOR vapor GROOVE structure GEOMETRIC factor
下载PDF
Visual Study on Flow and Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
16
作者 杨洪海 Groll Manfred Khandekar Sameer 《Journal of Donghua University(English Edition)》 EI CAS 2009年第1期80-84,共5页
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d... This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed. 展开更多
关键词 可视化 平板 脉动 闭环 甲基丙烯酸甲酯 热特性 业务流 管道
下载PDF
STUDIES ON HEAT TRANSFER OF FLUID OSCILLATED WITHIN PIPES
17
作者 Cao Yuzhang, Zhu Gujun and Zhao LingdeBeijing University of Aeronautics and Astronautics 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第3期287-294,共8页
This paper is a brief summarization of research achievements about enhanced heat transfer of a fluid oscillated within pipes. Analytical solutions, numerical results and dimensional analyses are summarized and compare... This paper is a brief summarization of research achievements about enhanced heat transfer of a fluid oscillated within pipes. Analytical solutions, numerical results and dimensional analyses are summarized and compared with experimental data in the paper. Also, the mechanism of enhanced heat transfer is discussed. It is considered that increase in the effective area of heat conduction and increase in temperature gradient are the main reasons of enhanced heat transfer. 展开更多
关键词 heat STUDIES ON heat TRANSFER OF FLUID OSCILLATED WITHIN pipes
下载PDF
Numerical Modeling of the Vapour Vortex Formation in the Short Heat Pipes
18
作者 Arkady Vladimirovich Seryakov 《Journal of High Energy Physics, Gravitation and Cosmology》 2019年第1期218-234,共17页
The results of the numerical studies of vortex formation inside short heat pipes (HP’s) with profiled vapour channel in the Laval-liked nozzle form are presented. For the first time, it was found that the vapour vort... The results of the numerical studies of vortex formation inside short heat pipes (HP’s) with profiled vapour channel in the Laval-liked nozzle form are presented. For the first time, it was found that the vapour vortex of moist compressible vapour flow in the cooled part of vapour channel changes its rotational motion direction. The rotation direction of the toroidal vapour vortex, obtained by solving the Navier Stokes equations is dependent on the heat power value, entering to the HP’s evaporator. With low heat power loads the rotational direction of the circular toroidal vapour ring due to the Coanda effect and sticking moving vapour jets to the channel’s walls occurs from the periphery to the longitudinal axis of the vapour channel. While the heat power load increasing, the direction of the circular toroidal vapour ring rotation changes to the opposite, from the longitudinal axis to the periphery of the vapour channel. The thickness of the formed working fluid condensate film located under the toroidal vapour vortex also related to the evaporator heat power load and the associated toroidal vapour vortex rotation direction. The numerical thickness calculation of the formed working fluid condensate film located under the toroidal vapour vortex was compared with experimental values, obtained by capacitive sensors. The thickness values of the calculated condensate film thickness and experimentally measured values using capacitive sensors are close in magnitude order. 展开更多
关键词 heat pipes CONDENSATE Film Thickness VAPOUR VORTEX Formation SHEAR Stress
下载PDF
Two-Phase Flow Modeling in a Single Closed Loop Pulsating Heat Pipes
19
作者 杨洪海 Sameer Khandekar +1 位作者 Sanka V. V.S. N.S. Manyam Manfred Groll 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期439-444,共6页
Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far re... Mathematical modeling of pulsating heat pipes through ‘first’ principles is a contemporary problem which remains quite elusive. Simplifications and assumptions made in all the modeling approaches developed so far render them unsuitable for engineering design. In this paper, a more realistic modeling scheme is presented which provides considerable try for thought toward the next progressive step. At high enough heat flux level, closed loop pulsating heat pipes experience a bulk internal unidirectional fluid circulation. Under such a condition, conventional two-phase flow modeling in capillary tubes may be applied. This has been attempted for single-loop PHPs. A homogeneous model and a separated two-fluid flow model based on simultaneous conservation of mass, momentum and energy, have been developed for an equivalent ‘open flow’ system. The model allows prediction of two-phase flow parameters in each sub-section of the device thereby providing important insights into its operation. The concept of ‘void fraction constraint’ in pulsating heat pipe operation is introduced and its relevance to future modeling attempts is outlined. 展开更多
关键词 闭环振动热管 二相流 流体动力学 数学模型
下载PDF
Solar Collectors of Buildings Facade Based on Aluminum Heat Pipes with Colored Coating
20
作者 Sergii Khaimasov Boris Rassamakin +1 位作者 Rostyslav Musiy Andrii Rassamakin 《Journal of Civil Engineering and Architecture》 2013年第4期403-408,共6页
关键词 太阳能集热器 建筑物 铝合金 彩色涂层 热管 建筑外墙装饰 模块开发 阳极氧化处理
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部