期刊文献+
共找到930篇文章
< 1 2 47 >
每页显示 20 50 100
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
1
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact Damping force
下载PDF
Measurement of electrical conductivity of micron-scale metallic wires 被引量:1
2
作者 M.SAKA 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期759-762,共4页
Electrical conductivities of micron-scale aluminum wires were quantitatively measured by a four-point atomic force microscope (AFM) probe. This technique is a combination of the principles of the four-point probe meth... Electrical conductivities of micron-scale aluminum wires were quantitatively measured by a four-point atomic force microscope (AFM) probe. This technique is a combination of the principles of the four-point probe method and standard AFM. This technique was applied to the 99.999% aluminum wires with 350 nm thickness and different widths of 5.0, 25.0 and 50.0μm. Since the small dimensions of the wires, the geometrical effects were discussed in details. Experiment results show that the four-point AFM probe is mechanically flexible and robust. The four-point AFM probe technique is capable of measuring surface topography together with local electrical conductivity simultaneously. The repeatable measurements indicate that this technique could be used for fast in-situ electrical properties characterization of sensors and microelectromechanical system devices. 展开更多
关键词 微米级金属丝 电导率 原子力显微镜 四点探针法 测量
下载PDF
Difference in particle characteristics and coating properties between spraying metallic and ceramic powder cored wires
3
作者 方建筠 栗卓新 +1 位作者 蒋建敏 史耀武 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第3期537-542,共6页
The sprayed particles of metallic and cermet wires were collected to analyze the atomization state of the particles in arc spraying forming, the microstructure and properties of metallic and ceramic coatings were inve... The sprayed particles of metallic and cermet wires were collected to analyze the atomization state of the particles in arc spraying forming, the microstructure and properties of metallic and ceramic coatings were investigated and compared. Particle size analyzer was used for quantifying particle size. The XRD, SEM and optical microscope(OM) were used to analyze the phase composition and microstructure of the particles and coatings. From the experimental results, some difference of particle characteristics was established between the spraying metallic and ceramic cored wires, and the microstructure and properties of coatings depend strongly on the particles behaviors. The result shows that Fe-TiB2/Al2O3 composite coating has a high potential for abrasive wear applications. 展开更多
关键词 金属粉末 陶瓷制品 粒子特性 喷雾
下载PDF
Analysis of metal transfer during electron beam welding with filler wire 被引量:3
4
作者 张秉刚 赵健 +1 位作者 李晓鹏 何俊 《China Welding》 EI CAS 2013年第4期14-18,共5页
The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device... The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device (CCD) visual sensing system, the metal transfer mode of filler wire was investigated. The results showed that there were five transfer modes during EBW process due to different wire feed rates and spatial positions between beam and filler wire, such as short-circuiting mode, molten metal bridge mode, small droplet mode, big droplet mode and mixed mode. By comparing the weld appearance of different transfer modes, the molten metal bridge transfer was proved to be the best transfer mode. 展开更多
关键词 electron beam welding metal transfer wire feed rate molten pool weld appearance
下载PDF
Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method 被引量:5
5
作者 Zhi-qiang Liu Pei-lei Zhang +2 位作者 Shao-wei Li Di Wu Zhi-shui Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期783-791,共9页
Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts wer... Cold metal transfer plus pulse(C+P)arc was applied in the additive manufacturing of 4043 Al alloy parts.Parameters in the manufacturing of the parts were investigated.The properties and microstructure of the parts were also characterized.Experimental results showed that welding at a speed of 8 mm/s and a wire feeding speed of 4.0 m/min was suitable to manufacture thin-walled parts,and the reciprocating scanning method could be adopted to manufacture thick-walled parts.The thin-walled parts of the C+P mode had fewer pores than those of the cold metal transfer(CMT)mode.The thin-and thick-walled parts of the C+P mode showed maximum tensile strengths of 172 and 178 MPa,respectively.Hardness decreased at the interface and in the coarse dendrite and increased in the refined grain area. 展开更多
关键词 wire arc additive manufacturing aluminum alloy cold metal transfer microstructure layer deposition
下载PDF
Effects of infiltration parameters on mechanical and microstructural properties of tungsten wire reinforced Cu_(47)Ti_(33)Zr_(11)Ni_6Sn_2Si_1 metallic glass matrix composites 被引量:2
6
作者 N.KHADEMIAN1 R.GHOLAMIPOUR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1314-1321,共8页
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a... Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively. 展开更多
关键词 bulk metallic glass metal matrix composite tungsten wire infiltration process mechanical property microstructure
下载PDF
Surface plasmon wave propagation along single metal wire 被引量:1
7
作者 钟任斌 刘维浩 +1 位作者 周俊 刘盛纲 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期393-401,共9页
Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transm... Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of the radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate a general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines. 展开更多
关键词 surface plasmon single metal wire wave propagation
下载PDF
Study on response of metal wire in thermoacoustic imaging 被引量:1
8
作者 Zheng Liang Weipeng Wang +1 位作者 Shuaiqi Qiao Lin Huang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第3期45-53,共9页
Thermoacoustic imaging(TAI)is an emerging high-resolution and high-contrast imaging technology.In recent years,metal wires have been used in TAI experiments to quantitatively evaluate the spatial resolution of differe... Thermoacoustic imaging(TAI)is an emerging high-resolution and high-contrast imaging technology.In recent years,metal wires have been used in TAI experiments to quantitatively evaluate the spatial resolution of different systems.However,there is still a lack of analysis of the response characteristics and principles of metal wires in TAI.Through theoretical and simulation analyses,this paper proposes that the response of metal(copper)wires during TAI is equivalent to the response of antennas.More critically,the response of the copper wire is equivalent to the response of a half-wave dipole antenna.When its length is close to half the wavelength of the incident electromagnetic wave,it obtains the best response.In simulation,when the microwave excitation frequencies are 1.3 GHz,3.0 GHz,and 5.3 GHz,and the lengths of copper wires are separately set to 11 cm,5 cm,and 2.5 cm,the maximum SAR distribution and energy coupling effciency are obtained.This result is connected with the best response of half-wave dipole antennas with lengths of 11 cm,4.77 cm,and 2.7 cm under the theoretical design,respectively.Regarding the further application,TAI can be used to conduct guided minimally invasive surgery on surgical instrument imaging.Thus,this paper indicated that results can also guide the design of metal surgical instruments utilized in different microwave frequencies. 展开更多
关键词 Thermoacoustic imaging SIMULATION metal wire ANTENNA
下载PDF
Inclusion behavior and microstructure of weld metal with Ce in twin wire high heat input submerged-arc welding 被引量:5
9
作者 Yu Shengfu Dai Yili Yan Ning 《China Welding》 EI CAS 2017年第1期29-36,共8页
In this study,the welding thermal cycle curve exhibited two temperature peaks in high heat-input twin-wire separate-pool submerged-arc welding and coarse-grained heat affected zone existed in the welded joint. The inc... In this study,the welding thermal cycle curve exhibited two temperature peaks in high heat-input twin-wire separate-pool submerged-arc welding and coarse-grained heat affected zone existed in the welded joint. The inclusions of primary weld metal and coarse-grained heat affected zone of Ce-added SAW should be Al_2O_3,MnO,SiO_2,TiO,Ce_2S_3,CeS,Ce_2O_2S and Ce_2O_3. Under the effect of welding thermal cycle,oxy-sulfides inclusions of Ce,the diameter of which was less than 2. 0 μm,slightly grew larger,but the composition and type of the inclusions didn't change. The microstructure of the large heat input weld metal had acicular ferrite that Ce oxide sulphide particles induced nucleation and proeutectoid ferrite. In the coarse-grained heat affected zone of weld metal,home-position precipitation of acicular ferrite and sympathetic acicular ferrite were both observed. It was supposed that previous crystal cells of acicular ferrite in austenite grain promoted home-position precipitation of acicular ferrite. Meanwhile,sympathetic acicular ferrite tended to nucleate at the primary acicular ferrite grain boundaries,where high dislocation density was located,and grew inside the neighboring carbon-depleted austenitic regions. The granular bainite nucleated in the austenitic zone with high carbon content close to acicular ferrite and sympathetic acicular ferrite. 展开更多
关键词 twin-wire SUBMERGED-ARC welding weld metal with CE inclusions acicular FERRITE SYMPATHETIC acicular FERRITE home-position precipitation
下载PDF
Effect of the wire preheating transfer in GMAW temperature on the metal with thick wire
10
作者 倪俊 高洪明 张宗郁 《China Welding》 EI CAS 2012年第4期76-80,共5页
A hot-wire gas metal arc welding (GMAIV) method using a TIG arc to preheat the wire was proposed and a corresponding experimental system was developed. The images of molten metal droplets in GMA W with thick-wire di... A hot-wire gas metal arc welding (GMAIV) method using a TIG arc to preheat the wire was proposed and a corresponding experimental system was developed. The images of molten metal droplets in GMA W with thick-wire diameter of 3.2 mm were captured by a high-speed camera, and the influence of the wire temperature on metal transfer was analyzed by measurements of droplet radius and transfer frequency. Two metal transfer modes were mentioned in this paper: the short- circuit transfer and the globular transfer mode. The results demonstrate that the wire temperature significantly impacts the metal transfer mode, droplet size and transfer rate at a certain welding current range. And with the increasing wire temperature, the change of metal transfer mode was observed. By increasing the temperature of the welding wire, the droplet size decreases and the droplet transfer frequency increases accordingly. In addition, it is important that the drop spray mode, which hardly occurs in GMAW with steel wire, was obtained by means of increasing the wire temperature. 展开更多
关键词 thick wire gas metal arc welding wire temperature metal transfer
下载PDF
Mechanical behavior of entangled metallic wire materials-polyurethane interpenetrating composites
11
作者 Xiao-yuan Zheng Zhi-ying Ren +2 位作者 Hong-bai Bai Zhang-bin Wu You-song Guo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期120-136,共17页
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre... Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites. 展开更多
关键词 Entangled metallic wire material Composites materials Damping property STIFFNESS Fatigue characteristics
下载PDF
Quasi-static and low-velocity impact mechanical behaviors of entangled porous metallic wire material under different temperatures
12
作者 Yi-wan Wu Hu Cheng +3 位作者 Shang-zhou Li Yu Tang Hong-bai Bai Chun-hong Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期143-152,共10页
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m... To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications. 展开更多
关键词 Entangled porous metallic wire material Low-velocity impact High temperature Energy dissipation characteristics Mechanical behavior
下载PDF
Numerical and experimental evaluation for density-related thermal insulation capability of entangled porous metallic wire material
13
作者 Tao Zhou Rong-zheng Fang +3 位作者 Di Jia Pei Yang Zhi-ying Ren Hong-bai Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期177-188,共12页
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi... Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%. 展开更多
关键词 Entangled porous metallic wire material (EPMWM) Virtual manufacturing technology(VMT) Thermal resistance network Effective thermal conductivity(ETC) Thermal insulation factor
下载PDF
Emergent reversible giant electroresistance in spacially confined La_(0.325)Pr_(0.3)Ca_(0.375)MnO_3 wires
14
作者 崔丽敏 李洁 +2 位作者 王佳 张玉 郑东宁 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期6-9,共4页
Micro-patterning is considered to be a promising way to analyze phase-separated manganites. We investigate resistance in micro-patterned La0.325Pr0.3Ca0.375MnO3 wires with width of 10 μm, which is comparable to the p... Micro-patterning is considered to be a promising way to analyze phase-separated manganites. We investigate resistance in micro-patterned La0.325Pr0.3Ca0.375MnO3 wires with width of 10 μm, which is comparable to the phase separation scale in this material. A reentrant of insulating state at the metal-insulator temperature Tp is observed and a giant resistance change of over 90% driven by electric field is achieved by suppression of this insulating state. This resistance change is mostly reversible, The I-V characteristics are measured in order to analyze the origin of the giant electroresistance and two possible explanations are proposed. 展开更多
关键词 metal-insulator transition micro-wire phase separation MANGANITES
下载PDF
The Effect of Nanometer Size Effect on the Optical Property of Metallic Wire Grid
15
作者 Yulun Wu Shimeng Feng 《Optics and Photonics Journal》 2016年第10期269-274,共7页
We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of... We mainly investigated the effect of metallic wire grid on its optical property. At first, we give one simple model to deduce an expression which can describe the relationship of the optical property with the width of metallic wire grid. This expression could be used to calculate the reflectance of the metallic wire grid. We also give the corresponding computer simulation. Our simulation shows that the reflectance would increase when the width of metallic wire grid increase. The wider the metallic wire grid is, the higher the reflectance is. The reflectance would reach the maximum value only when the width is over the free path of electronic. 展开更多
关键词 metallic wire Grid Mean Free Path REFLECTIVITY
下载PDF
Empirical Model for Evaluating Covered Effect on Polyimide/Metal Wire Cowrapped Yarn by Response Surface Methodology
16
作者 邵慧奇 陈南梁 +3 位作者 蒋金华 熊蕾 邵光伟 孔洁 《Journal of Donghua University(English Edition)》 EI CAS 2016年第4期520-523,共4页
To accurately evaluate and predict the covered effect of cowrapped yarn,a novel characterization is performed by covered ratio and fineness. Polyimide / metal wire co-wrapped yarn which was designed for applications i... To accurately evaluate and predict the covered effect of cowrapped yarn,a novel characterization is performed by covered ratio and fineness. Polyimide / metal wire co-wrapped yarn which was designed for applications in aerospace and composites was developed through hollow spindle spinning process. Core yarn speed,hollow spindle rotating speed,and wrapping yarn twist were selected as three main factors that affected spinning process. An empirical model indicating relationship between spinning parameters and covered effect was established based on response surface methodology( RSM). The results show that wrapping yarn twist contributes greatly to smooth wrapping process. Core yarn speed and spindle rotating speed are significant impact factors of covered effect and they interact significantly in covered ratio, but indistinctively in fineness. 展开更多
关键词 hollow spinning covered spindle rotating ultrafine interact sparse bounding aerospace
下载PDF
STUDY ON METAL TRANSFER MODES OF SELF-SHIELDED FLUX-CORED WELDING WIRE
17
作者 Zhuoxin, Li Banggu, Chen Ping, Huangfu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1999年第1期41-45,56,共1页
Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained throu... Metal transfer behavior of six kinds of self shielded flux cored wire(SSFCW) is studied using the apparatus of SSFCW high speed photography self made. Six kinds of metal transfer modes of SSFCW were obtained through observation for high speed photograph film and analysis. It is believed that the research is of magnificent for improving operative performance and mechanical properties of SSFCW and dynamics characteristic of welding power. 展开更多
关键词 SELF shielded flux cored welding wire metal transfer Secondary droplet
全文增补中
Arc characteristics of submerged arc welding with stainless steel wire 被引量:3
18
作者 Ke Li Zhi-sheng Wu +1 位作者 Cui-rong Liu Feng-hua Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期772-778,共7页
The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carded out under the same preset arc voltage combined with different ... The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carded out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes. 展开更多
关键词 submerged arc welding electric arc CHARACTERISTICS stainless steel wire metal transfer
下载PDF
Effect of deposition rate on microstructure and mechanical properties of wire arc additive manufacturing of Ti-6Al-4V components 被引量:7
19
作者 ZHANG Pei-lei JIA Zhi-yuan +7 位作者 YAN Hua YU Zhi-shui WU Di SHI Hai-chuan WANG Fu-xin TIAN Ying-tao MA Song-yun LEI Wei-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1100-1110,共11页
Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and... Wire arc additive manufacturing(WAAM)is a novel manufacturing technique by which high strength metal components can be fabricated layer by layer using an electric arc as the heat source and metal wire as feedstock,and offers the potential to produce large dimensional structures at much higher build rate and minimum waste of raw material.In the present work,a cold metal transfer(CMT)based additive manufacturing was carried out and the effect of deposition rate on the microstructure and mechanical properties of WAAM Ti-6Al-4V components was investigated.The microstructure of WAAM components showed similar microstructural morphology in all deposition conditions.When the deposition rate increased from 1.63 to 2.23 kg/h,the ultimate tensile strength(UTS)decreased from 984.6 MPa to 899.2 MPa and the micro-hardness showed a scattered but clear decline trend. 展开更多
关键词 wire and arc additive manufacturing titanium alloys cold metal transfer deposition rate
下载PDF
Experiment Study on Castex Process of AS Wire
20
作者 Zhiyuan Shi Wanjun Wang +1 位作者 Jinglin Wen Xinhua Wang Metallurgy School, University of Science and Technology Beijing, Beijing 100083, China School of Materials and Metallurgy,Northeastern University, Shenyang 110006, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第1期22-24,共3页
In order to optimize the Castex process of AS wire, the systematic experiments have been done for different process parameters with self-made DZJ-II 350 Castex machine. The parameters, such as casting temperature of a... In order to optimize the Castex process of AS wire, the systematic experiments have been done for different process parameters with self-made DZJ-II 350 Castex machine. The parameters, such as casting temperature of aluminum, flow of cooling water, extrusion ratio and the gap between the surface of wheel and that of the mould, have been mainly studied. The results show that with the increase of casting temperature or rotating speed of wheel the measured length of liquid metal zone increases too. However, the length of liquid metal zone decreases with the increase of the flow of cooling water. Moreover, the relationship between the extrusion ratio and the extrusion power is studied. 展开更多
关键词 CASTEX AS wire PARAMETER length of liquid metal zone
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部