In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c...In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work.展开更多
The distance from the Great Wall Station (62.2°S, 58.9°W) to Xinxiang (35.3°N, 113.8°E) is 16981 km. The path passes through the polar cap absorption region and the auroral absorption zone, and it ...The distance from the Great Wall Station (62.2°S, 58.9°W) to Xinxiang (35.3°N, 113.8°E) is 16981 km. The path passes through the polar cap absorption region and the auroral absorption zone, and it is across the equator.In this paper firstly the effects of short wave communication and usable time blocks and frequency ranges between the Antarctic Great Wall Station and Xinxiang from December 1985 to March 1986 are introduced. The comparison between the usable frequency ranges with the estimated MUF is made. The upper limit of frequency ranges of communication along the short great circle path basically agrees with the MUF but there is difference between them along the long great circle path.Secondly, the result of the propagation bearings experiment in January to February 1986 is introduced in more detail, The propagation along the great circle path from the Great Wall Station to Xinxiang is the main propagation mode. But the propagation along non great circle paths occurs at times between Great Wall Station and Xinxiang. The non great circle path propagation varies with time because the ionospheric absorption and other conditions which support the non great circle path propagation are the function of the time. So the courses of the non great circle path propagation may be different in the different time. The mechanism of the constructing non great circle path propagation has been analysed. We preliminarily think the main cause of propagation along non great circle path is the ground scatter. The stronger radialization of the side lobes of the antenna and the less absorption of the ionosphere contribute to forming non great circle path propagation.展开更多
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu...Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.展开更多
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras...In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.展开更多
In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu ...In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu be with 47.75 mm diameter and 0.6~1.5 mm wall thickness. The research results s h ow that the roundness error of ultra-thin wall parts in ultrasonic vibration cu tting is only one third of that in common cutting. The relations between the rou ndness error and the cutting parameters behave as: (1) The roundness error in co mmon cutting decreases gradually with the rise of cutting speed, while in ultras onic cutting, the roundness changes not obviously till the cutting speed is up t o a value, which is nearly equal to one third of the critical velocity. Then the roundness of workpiece will begin to increase slowly. (2) The roundness error i ncreases along with the feed rate both in common cutting and ultrasonic cutting. (3) Within the range of cutting depth in experiment, the influence of cutting d epth on the roundness error is more obvious in common cutting than that in ultra sonic vibration cutting. The conclusions are useful in machining such precise ul tra-thin wall parts. According to the tests, the following conclusions can be o btained: 1) Compared with common cutting, ultrasonic cutting can decrease effect ively roundness error of the workpiece. Under the same condition, the roundness error of the ultra-thin wall part in ultrasonic turning is about one third of t hat in common cutting. 2) In common cutting, cutting depth and feed rate have mu ch influence on the roundness and the influence of cutting velocity is little. W hile in ultrasonic cutting, the roundness was influenced heavily only when feed rate is more than 0.1 mm/r and cutting speed is more than 1/3 of the critical ro tation speed, cutting depth has little influence on the roundness in the experim ent. 3) Kerosene-oil is an optimum cutting fluid in machining ultra-thin wall workpiece. 4) To machine the ultra-thin wall precision part, ultrasonic cutting is the perfect method which can decrease the roundness error effectively an d ensure high quality of the surface.展开更多
Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engin...Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.展开更多
This paper delves into the lateral load-bearing behavior of lattice-shaped diaphragm wall(LSDW),a novel type of diaphragm wall foundation with many engineering advantages.By employing a double-layer wall structure for...This paper delves into the lateral load-bearing behavior of lattice-shaped diaphragm wall(LSDW),a novel type of diaphragm wall foundation with many engineering advantages.By employing a double-layer wall structure for the first time in laboratory settings,the research presents an innovative testing methodology,complete with novel computational formulas,to accurately measure the responses of LSDW’s inner and outer walls under varying loads.It is found that the Q-s curves of LSDWs exhibit a continuous,progressive deformation and failure characteristic without any abrupt drops,and the standard for judging the horizontal bearing capacity of LSDW foundations should be based on the allowable displacement of the superstructure.The bearing capacity for the double-chamber LSDWs was found to be approximately 1.68 times that of the single-chamber structure,pointing to a complex interplay between chamber number and structural capacity that extends beyond a linear relationship and incorporates the group wall effect.The study also reveals that LSDWs act as rigid bodies with minimal angular displacement and a consistent tilting deformation,peaking in bending moment at about 0.87 of wall depth from the mud surface,across different chamber configurations.Furthermore,it can be found that using the p-y curve method for analyzing the horizontal behavior of LSDW foundations is feasible,and the hyperbolic p-y curve method offers higher accuracy in calculations.These insights offer valuable guidance for both field and laboratory testing of LSDWs and aid in the design and calculation of foundations under horizontal loads.展开更多
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us...Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.展开更多
文摘In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work.
文摘The distance from the Great Wall Station (62.2°S, 58.9°W) to Xinxiang (35.3°N, 113.8°E) is 16981 km. The path passes through the polar cap absorption region and the auroral absorption zone, and it is across the equator.In this paper firstly the effects of short wave communication and usable time blocks and frequency ranges between the Antarctic Great Wall Station and Xinxiang from December 1985 to March 1986 are introduced. The comparison between the usable frequency ranges with the estimated MUF is made. The upper limit of frequency ranges of communication along the short great circle path basically agrees with the MUF but there is difference between them along the long great circle path.Secondly, the result of the propagation bearings experiment in January to February 1986 is introduced in more detail, The propagation along the great circle path from the Great Wall Station to Xinxiang is the main propagation mode. But the propagation along non great circle paths occurs at times between Great Wall Station and Xinxiang. The non great circle path propagation varies with time because the ionospheric absorption and other conditions which support the non great circle path propagation are the function of the time. So the courses of the non great circle path propagation may be different in the different time. The mechanism of the constructing non great circle path propagation has been analysed. We preliminarily think the main cause of propagation along non great circle path is the ground scatter. The stronger radialization of the side lobes of the antenna and the less absorption of the ionosphere contribute to forming non great circle path propagation.
文摘Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.
文摘In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.
文摘In the paper, the experimental researches were carr ie d out to discuss the roundness forming rule and the influence of cutting paramet ers on roundness by ultrasonic vibration cutting of the camera’s guiding drawtu be with 47.75 mm diameter and 0.6~1.5 mm wall thickness. The research results s h ow that the roundness error of ultra-thin wall parts in ultrasonic vibration cu tting is only one third of that in common cutting. The relations between the rou ndness error and the cutting parameters behave as: (1) The roundness error in co mmon cutting decreases gradually with the rise of cutting speed, while in ultras onic cutting, the roundness changes not obviously till the cutting speed is up t o a value, which is nearly equal to one third of the critical velocity. Then the roundness of workpiece will begin to increase slowly. (2) The roundness error i ncreases along with the feed rate both in common cutting and ultrasonic cutting. (3) Within the range of cutting depth in experiment, the influence of cutting d epth on the roundness error is more obvious in common cutting than that in ultra sonic vibration cutting. The conclusions are useful in machining such precise ul tra-thin wall parts. According to the tests, the following conclusions can be o btained: 1) Compared with common cutting, ultrasonic cutting can decrease effect ively roundness error of the workpiece. Under the same condition, the roundness error of the ultra-thin wall part in ultrasonic turning is about one third of t hat in common cutting. 2) In common cutting, cutting depth and feed rate have mu ch influence on the roundness and the influence of cutting velocity is little. W hile in ultrasonic cutting, the roundness was influenced heavily only when feed rate is more than 0.1 mm/r and cutting speed is more than 1/3 of the critical ro tation speed, cutting depth has little influence on the roundness in the experim ent. 3) Kerosene-oil is an optimum cutting fluid in machining ultra-thin wall workpiece. 4) To machine the ultra-thin wall precision part, ultrasonic cutting is the perfect method which can decrease the roundness error effectively an d ensure high quality of the surface.
基金supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No. 12A087)Innovation Fund for Technology Based Firms(Grant No. 09C26214305047)
文摘Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.
基金supported by the National Nature Science Foundation of China(Grant No.42007247)the National Foreign Expert Project of China(No.DL2023036001L).
文摘This paper delves into the lateral load-bearing behavior of lattice-shaped diaphragm wall(LSDW),a novel type of diaphragm wall foundation with many engineering advantages.By employing a double-layer wall structure for the first time in laboratory settings,the research presents an innovative testing methodology,complete with novel computational formulas,to accurately measure the responses of LSDW’s inner and outer walls under varying loads.It is found that the Q-s curves of LSDWs exhibit a continuous,progressive deformation and failure characteristic without any abrupt drops,and the standard for judging the horizontal bearing capacity of LSDW foundations should be based on the allowable displacement of the superstructure.The bearing capacity for the double-chamber LSDWs was found to be approximately 1.68 times that of the single-chamber structure,pointing to a complex interplay between chamber number and structural capacity that extends beyond a linear relationship and incorporates the group wall effect.The study also reveals that LSDWs act as rigid bodies with minimal angular displacement and a consistent tilting deformation,peaking in bending moment at about 0.87 of wall depth from the mud surface,across different chamber configurations.Furthermore,it can be found that using the p-y curve method for analyzing the horizontal behavior of LSDW foundations is feasible,and the hyperbolic p-y curve method offers higher accuracy in calculations.These insights offer valuable guidance for both field and laboratory testing of LSDWs and aid in the design and calculation of foundations under horizontal loads.
基金National Key Research and Development Program of China under Grant Nos. 2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No. 52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No. 19EEEVL0402
文摘Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.