Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ...Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.展开更多
The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAH...The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.展开更多
Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,te...Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.展开更多
Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts trad...Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves.展开更多
Oil painting is a traditional Western painting form.With the introduction of China and the influence of China’s traditional painting and aesthetics,the painting style became more distinctive,expanding a new developme...Oil painting is a traditional Western painting form.With the introduction of China and the influence of China’s traditional painting and aesthetics,the painting style became more distinctive,expanding a new development direction of oil painting,and thus imagery oil painting came into being.Color,as the most important element in imagery oil painting,mainly plays the role of mood creation and emotional expression.Many creators are good at injecting their thoughts and emotions into the paintings through color matching,so as to enhance the artistic expression of the paintings.This paper analyzes the color expression characteristics of imagery oil painting and explores the color expression techniques in imagery oil painting and mood creation of imagery oil painting from several aspects.展开更多
By the brief introduction of Kate Chopin and her achievement, this paper elaborates the awakening of consciousness of the feminism of the protagonist in Kate Chopin's The Story of an Hour. In the short story, the ...By the brief introduction of Kate Chopin and her achievement, this paper elaborates the awakening of consciousness of the feminism of the protagonist in Kate Chopin's The Story of an Hour. In the short story, the author uses many literary elements to describe the characters, especially the irony and imagery. This thesis uses those rhetorical devices to vividly describe the characters and to criticize the inequality between men and women in the late 19th century.[1]展开更多
The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high...The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.展开更多
Wordsworth was famous as one of those"Lake Poets".His famous romantic poem the Daffodils has been read and analyzed by now.This paper elucidates on Wordsworth’s choice of words and also on the greater profo...Wordsworth was famous as one of those"Lake Poets".His famous romantic poem the Daffodils has been read and analyzed by now.This paper elucidates on Wordsworth’s choice of words and also on the greater profound concept that he is trying to depict to his readers,and explains the poem showing how Wordsworth eloquently uses figurative language,imagery,and personification to describe a scenic display of the daffodils and demonstrate his thought"emotion recollected in tranquility"in hope of helping reader understand Wordsworth’s poetry much better.展开更多
The Thorn Birds and Scarlet Letter both explore the theme of love and religion, and both show the skilful use of imagism and symbolism. This essay analyzes the common images of the two novels and compares their simila...The Thorn Birds and Scarlet Letter both explore the theme of love and religion, and both show the skilful use of imagism and symbolism. This essay analyzes the common images of the two novels and compares their similarities and differences.展开更多
Jean Toomer was an important figure in African-American literature. He was an American poet,novelist and an important figure of the Harlem Renaissance. His most famous work,Cane,was published in 1923 and considered by...Jean Toomer was an important figure in African-American literature. He was an American poet,novelist and an important figure of the Harlem Renaissance. His most famous work,Cane,was published in 1923 and considered by many as a masterpiece of the Harlem Renaissance. Reapers is the first poem in Cane which is related to the reapers in southern plantation and rich in imagery. Toomer conveys profound theme by using various images in Reapers.展开更多
Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle...Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.展开更多
The problem of combined radar imagery from multiple sparse frequency subbands initially incoherent to each other is of practical importance for radar target discrimination.A new coherent processing technique based on ...The problem of combined radar imagery from multiple sparse frequency subbands initially incoherent to each other is of practical importance for radar target discrimination.A new coherent processing technique based on probability density analysis of the subband data is proposed,which is applicable for radar imaging from measurements of two or more initially incoherent radar subbands.The coherence parameters for both amplitude and phase are obtained by combining modern spectral analysis with probability density estimation.The major advantage of the proposed technique lies in that it enables much more robust cohering for the sparse subband data of real-world complex targets.展开更多
Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown...Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).展开更多
This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lin...This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lines between land objects and water objects. Numerical algorithms have been identified and de-vised to segment and classify remote sensing imagery and LiDAR data into land and water pixels, to form and enhance land and water objects, and to trace and vectorize the boundaries between land and water ob-jects as shoreline features. A contouring routine is developed as an alternative method for extracting shore-line features from LiDAR data. While most of numerical algorithms are implemented using C++ program-ming language, some algorithms use available functions of ArcObjects in ArcGIS. Based on VB .NET and ArcObjects programming, a graphical user’s interface has been developed to integrate and organize shoreline extraction routines into a software package. This product represents the first comprehensive software tool dedicated for extracting shorelines from remotely sensed data. Radarsat SAR image, QuickBird multispectral image, and airborne LiDAR data have been used to demonstrate how these software routines can be utilized and combined to extract shoreline features from different types of input data sources: panchromatic or single band imagery, color or multi-spectral image, and LiDAR elevation data. Our software package is freely available for the public through the internet.展开更多
Central nerve signal evoked by thoughts can be directly used to control a robot or prosthetic devices without the involvement of the peripheral nerve and muscles.This is a new strategy of human-computer interaction.A ...Central nerve signal evoked by thoughts can be directly used to control a robot or prosthetic devices without the involvement of the peripheral nerve and muscles.This is a new strategy of human-computer interaction.A method of electroencephalogram(EEG) phase synchronization combined with band energy was proposed to construct a feature vector for pattern recognition of brain-computer interaction based on EEG induced by motor imagery in this paper,rhythm and beta rhythm were first extracted from EEG by band pass filter and then the frequency band energy was calculated by the sliding time window;the instantaneous phase values were obtained using Hilbert transform and then the phase synchronization feature was calculated by the phase locking value(PLV) and the best time interval for extracting the phase synchronization feature was searched by the distribution of the PLV value in the time domain.Finally,discrimination of motor imagery patterns was performed by the support vector machine(SVM).The results showed that the phase synchronization feature more effective in4s-7s and the correct classification rate was 91.4%.Compared with the results achieved by a single EEG feature related to motor imagery,the correct classification rate was improved by 3.5 and4.3 percentage points by combining phase synchronization with band energy.These indicate that the proposed method is effective and it is expected that the study provides a way to improve the performance of the online real-time brain-computer interaction control system based on EEG related to motor imagery.展开更多
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the...The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.展开更多
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual...The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.展开更多
A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) est...A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.展开更多
Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddi...Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddies and image itself, it is sometimes difficult to successfully detect ocean eddies using these methods. A mnltifractal filtering technology is proposed for extraction of ocean eddies and demonstrated using NASA MODIS, SeaWiFS and NOAA satellite data set in the typical area, such as ocean west boundary current. Results showed that the new method has a superior performance over the traditional methods.展开更多
基金funded by the Chongqing Normal University Startup Foundation for PhD(22XLB021)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2023B40).
文摘Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains.
基金funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
文摘The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
文摘Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.
文摘Imagery analysis is a commonly used analytical method in literary analysis.In Angela Carter’s work,the image of wolves is particularly prominent.Her“Werewolf Tetralogy”rewrites traditional culture and subverts traditional consciousness,and is the research object of many scholars.Starting from the analysis of the wolf image in The Company of Wolves,this paper uses Deleuze’s Becoming-Animal Theory to explore the construction of harmony between nature,humans and gender relations in The Company of Wolves.
文摘Oil painting is a traditional Western painting form.With the introduction of China and the influence of China’s traditional painting and aesthetics,the painting style became more distinctive,expanding a new development direction of oil painting,and thus imagery oil painting came into being.Color,as the most important element in imagery oil painting,mainly plays the role of mood creation and emotional expression.Many creators are good at injecting their thoughts and emotions into the paintings through color matching,so as to enhance the artistic expression of the paintings.This paper analyzes the color expression characteristics of imagery oil painting and explores the color expression techniques in imagery oil painting and mood creation of imagery oil painting from several aspects.
文摘By the brief introduction of Kate Chopin and her achievement, this paper elaborates the awakening of consciousness of the feminism of the protagonist in Kate Chopin's The Story of an Hour. In the short story, the author uses many literary elements to describe the characters, especially the irony and imagery. This thesis uses those rhetorical devices to vividly describe the characters and to criticize the inequality between men and women in the late 19th century.[1]
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period (No.2006BAB15B01)
文摘The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.
文摘Wordsworth was famous as one of those"Lake Poets".His famous romantic poem the Daffodils has been read and analyzed by now.This paper elucidates on Wordsworth’s choice of words and also on the greater profound concept that he is trying to depict to his readers,and explains the poem showing how Wordsworth eloquently uses figurative language,imagery,and personification to describe a scenic display of the daffodils and demonstrate his thought"emotion recollected in tranquility"in hope of helping reader understand Wordsworth’s poetry much better.
文摘The Thorn Birds and Scarlet Letter both explore the theme of love and religion, and both show the skilful use of imagism and symbolism. This essay analyzes the common images of the two novels and compares their similarities and differences.
文摘Jean Toomer was an important figure in African-American literature. He was an American poet,novelist and an important figure of the Harlem Renaissance. His most famous work,Cane,was published in 1923 and considered by many as a masterpiece of the Harlem Renaissance. Reapers is the first poem in Cane which is related to the reapers in southern plantation and rich in imagery. Toomer conveys profound theme by using various images in Reapers.
基金The National Natural Science Foundation of China(No.71271053)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_082)
文摘Due to the practical problems of the high costs and the long development cycle of China’s cabinet production,a computer-aided design method of the cabinet based on style imagery is proposed.According to the principle of the conjoint analysis method, the rough set theory and the weight coefficient of different components of the cabinet,a multi-dimensional model of style imagery to evaluate the cabinet is built. Then the related constants of style imagery are calculated and the cabinet components library is also built by the three-dimensional modeling.Finally,with recombinant technology and the mapping model between cabinet style and external characteristics,the prototype system based on Visual Studio is proposed.This system actualizes the bidirectional reasoning between product style imagery and the shape features,which can assist designers to produce more creative designs,greatly improve the efficiency of cabinet development and increase the profits of companies.
文摘The problem of combined radar imagery from multiple sparse frequency subbands initially incoherent to each other is of practical importance for radar target discrimination.A new coherent processing technique based on probability density analysis of the subband data is proposed,which is applicable for radar imaging from measurements of two or more initially incoherent radar subbands.The coherence parameters for both amplitude and phase are obtained by combining modern spectral analysis with probability density estimation.The major advantage of the proposed technique lies in that it enables much more robust cohering for the sparse subband data of real-world complex targets.
基金supported by the National Natural Science Foundation of China,No.U1613228a grant from the Sub-Project under National “Twelfth Five-Year” Plan for Science & Technology Support Project in China,No.2011BAI08B11+1 种基金a grant from the Beijing Municipal Science & Technology Commission in China,No.Z161100002616018the Special Fund for Basic Scientific Research Business of Central Public Scientific Research Institutes in China,No.2014CZ-5,2015CZ-30
文摘Motor imagery is the mental representation of an action without overt movement or muscle activation. However, the effects of motor imagery on stroke-induced hand dysfunction and brain neural networks are still unknown. We conducted a randomized controlled trial in the China Rehabilitation Research Center. Twenty stroke patients, including 13 males and 7 females, 32–51 years old, were recruited and randomly assigned to the traditional rehabilitation treatment group(PP group, n = 10) or the motor imagery training combined with traditional rehabilitation treatment group(MP group, n = 10). All patients received rehabilitation training once a day, 45 minutes per session, five times per week, for 4 consecutive weeks. In the MP group, motor imagery training was performed for 45 minutes after traditional rehabilitation training, daily. Action Research Arm Test and the Fugl-Meyer Assessment of the upper extremity were used to evaluate hand functions before and after treatment. Transcranial magnetic stimulation was used to analyze motor evoked potentials in the affected extremity. Diffusion tensor imaging was used to assess changes in brain neural networks. Compared with the PP group, the MP group showed better recovery of hand function, higher amplitude of the motor evoked potential in the abductor pollicis brevis, greater fractional anisotropy of the right dorsal pathway, and an increase in the fractional anisotropy of the bilateral dorsal pathway. Our findings indicate that 4 weeks of motor imagery training combined with traditional rehabilitation treatment improves hand function in stroke patients by enhancing the dorsal pathway. This trial has been registered with the Chinese Clinical Trial Registry(registration number: Chi CTR-OCH-12002238).
文摘This paper presents algorithmic components and corresponding software routines for extracting shoreline features from remote sensing imagery and LiDAR data. Conceptually, shoreline features are treated as boundary lines between land objects and water objects. Numerical algorithms have been identified and de-vised to segment and classify remote sensing imagery and LiDAR data into land and water pixels, to form and enhance land and water objects, and to trace and vectorize the boundaries between land and water ob-jects as shoreline features. A contouring routine is developed as an alternative method for extracting shore-line features from LiDAR data. While most of numerical algorithms are implemented using C++ program-ming language, some algorithms use available functions of ArcObjects in ArcGIS. Based on VB .NET and ArcObjects programming, a graphical user’s interface has been developed to integrate and organize shoreline extraction routines into a software package. This product represents the first comprehensive software tool dedicated for extracting shorelines from remotely sensed data. Radarsat SAR image, QuickBird multispectral image, and airborne LiDAR data have been used to demonstrate how these software routines can be utilized and combined to extract shoreline features from different types of input data sources: panchromatic or single band imagery, color or multi-spectral image, and LiDAR elevation data. Our software package is freely available for the public through the internet.
基金supported by the National Natural Science Foundation of China(81470084,61463024)the Research Project for Application Foundation of Yunnan Province(2013FB026)+2 种基金the Cultivation Program of Talents of Yunnan Province(KKSY201303048)the Focal Program for Education Department of Yunnan Province(2013Z130)the Brain Information Processing and Brain-computer Interaction Fusion Control of Kunming University Scienceand Technology(Fund of Discipline Direction Team)
文摘Central nerve signal evoked by thoughts can be directly used to control a robot or prosthetic devices without the involvement of the peripheral nerve and muscles.This is a new strategy of human-computer interaction.A method of electroencephalogram(EEG) phase synchronization combined with band energy was proposed to construct a feature vector for pattern recognition of brain-computer interaction based on EEG induced by motor imagery in this paper,rhythm and beta rhythm were first extracted from EEG by band pass filter and then the frequency band energy was calculated by the sliding time window;the instantaneous phase values were obtained using Hilbert transform and then the phase synchronization feature was calculated by the phase locking value(PLV) and the best time interval for extracting the phase synchronization feature was searched by the distribution of the PLV value in the time domain.Finally,discrimination of motor imagery patterns was performed by the support vector machine(SVM).The results showed that the phase synchronization feature more effective in4s-7s and the correct classification rate was 91.4%.Compared with the results achieved by a single EEG feature related to motor imagery,the correct classification rate was improved by 3.5 and4.3 percentage points by combining phase synchronization with band energy.These indicate that the proposed method is effective and it is expected that the study provides a way to improve the performance of the online real-time brain-computer interaction control system based on EEG related to motor imagery.
基金supported by the National Natural Science Foundation of China(Grant Nos.41175035 and 40475018)the National Basic Research Program of China(Grant No.2009CB421502)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
基金supported by UGC Sponsored UPE-ⅡProject in Cognitive Science of Jadavpur University,Kolkata
文摘The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.
文摘A method to detect airports in large space-borne synthetic aperture radar(SAR) imagery is studied.First,the large SAR imagery is segmented according to amplitude characteristics using maximum a posteriori(MAP) estimator based on the heavytailed Rayleigh model.The attention is then paid on the object of interest(OOI) extracted from the large images.The minimumarea enclosing rectangle(MER) of OOI is created via a rotating calipers algorithm.The projection histogram(PH) of MER for OOI is then computed and the scale and rotation invariant feature for OOI are extracted from the statistical characteristics of PH.A support vector machine(SVM) classifier is trained using those feature parameters and the airport is detected by the SVM classifier and Hough transform.The application in space-borne SAR images demonstrates the effectiveness of the proposed method.
文摘Traditional methods of extracting the ocean wave eddy information from remotely sensed imagery mainly use the edge detection technology such as Canny and Hough operators. However, due to the complexities of ocean eddies and image itself, it is sometimes difficult to successfully detect ocean eddies using these methods. A mnltifractal filtering technology is proposed for extraction of ocean eddies and demonstrated using NASA MODIS, SeaWiFS and NOAA satellite data set in the typical area, such as ocean west boundary current. Results showed that the new method has a superior performance over the traditional methods.