The Asymptotic Waveform Evaluation (AWE) technique is an extrapolation method that provides a reduced-order model of linear system and has already been successfully used to analyze wideband electromagnetic scattering ...The Asymptotic Waveform Evaluation (AWE) technique is an extrapolation method that provides a reduced-order model of linear system and has already been successfully used to analyze wideband electromagnetic scattering problems. As the number of unknowns increases, the size of Method Of Moments (MOM) impedance matrix grows very rapidly, so it is a prohibitive task for the computation of wideband Radar Cross Section (RCS) from electrically large object or multi-objects using the traditional AWE technique that needs to solve directly matrix inversion. In this paper, an AWE technique based on the Characteristic Basis Function (CBF) method, which can reduce the matrix size to a manageable size for direct matrix inversion, is proposed to analyze electromagnetic scattering from multi-objects over a given frequency band. Numerical examples are presented to il-lustrate the computational accuracy and efficiency of the proposed method.展开更多
The multilevel characteristic basis function method(MLCBFM)with the adaptive cross approximation(ACA)algorithm for accelerated solution of electrically large scattering problems is studied in this paper.In the convent...The multilevel characteristic basis function method(MLCBFM)with the adaptive cross approximation(ACA)algorithm for accelerated solution of electrically large scattering problems is studied in this paper.In the conventional MLCBFM based on Foldy-Lax multiple scattering equations,the improvement is only made in the generation of characteristic basis functions(CBFs).However,it does not provide a change in impedance matrix filling and reducing matrix calculation procedure,which is time-consuming.In reality,all the impedance and reduced matrix of each level of the MLCBFM have low-rank property and can be calculated efficiently.Therefore,ACA is used for the efficient generation of two-level CBFs and the fast calculation of reduced matrix in this study.Numerical results are given to demonstrate the accuracy and efficiency of the method.展开更多
Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is su...Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is suitable for parallel computing. In this paper, a static load balance parallel method is presented by combining Message Passing Interface (MPI) with Adaptively Modified CBFM (AMCBFM). In this method, the object geometry is partitioned into distinct blocks, and the serial number of blocks is sent to related nodes according to a certain rule. Every node only needs to calculate the information on local blocks. The obtained results confirm the accuracy and efficiency of the proposed method in speeding up solving large electrical scale problems.展开更多
特征基函数的构造是特征基函数方法(characteristic basis function method,CBFM)的关键步骤之一,传统的CBF构造方法(construction of characteristic basis functions,CBFs)是在子区域上应用矩量法(methodof moment,MoM),因此需要消耗...特征基函数的构造是特征基函数方法(characteristic basis function method,CBFM)的关键步骤之一,传统的CBF构造方法(construction of characteristic basis functions,CBFs)是在子区域上应用矩量法(methodof moment,MoM),因此需要消耗大量的计算时间。为降低构造过程的计算量,提高电大目标电磁散射的计算效率,提出了基于高频近似方法的特征基函数快速构造方法,针对边缘效应引入了等效边缘流(equivalent edge currents,EEC)修正,可以在保持算法通用性的同时显著提高包含边缘结构的目标散射计算精度。数值结果验证了方法的正确性及高效性。展开更多
基金Supported by the National Natural Science Foundation of China (No. 60771034 )the 211 Project of Anhui University
文摘The Asymptotic Waveform Evaluation (AWE) technique is an extrapolation method that provides a reduced-order model of linear system and has already been successfully used to analyze wideband electromagnetic scattering problems. As the number of unknowns increases, the size of Method Of Moments (MOM) impedance matrix grows very rapidly, so it is a prohibitive task for the computation of wideband Radar Cross Section (RCS) from electrically large object or multi-objects using the traditional AWE technique that needs to solve directly matrix inversion. In this paper, an AWE technique based on the Characteristic Basis Function (CBF) method, which can reduce the matrix size to a manageable size for direct matrix inversion, is proposed to analyze electromagnetic scattering from multi-objects over a given frequency band. Numerical examples are presented to il-lustrate the computational accuracy and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China (No.61401003)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20123401110006)the Natural Science Research Project of Anhui Education ( No. KJ2015A436)
文摘The multilevel characteristic basis function method(MLCBFM)with the adaptive cross approximation(ACA)algorithm for accelerated solution of electrically large scattering problems is studied in this paper.In the conventional MLCBFM based on Foldy-Lax multiple scattering equations,the improvement is only made in the generation of characteristic basis functions(CBFs).However,it does not provide a change in impedance matrix filling and reducing matrix calculation procedure,which is time-consuming.In reality,all the impedance and reduced matrix of each level of the MLCBFM have low-rank property and can be calculated efficiently.Therefore,ACA is used for the efficient generation of two-level CBFs and the fast calculation of reduced matrix in this study.Numerical results are given to demonstrate the accuracy and efficiency of the method.
文摘Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is suitable for parallel computing. In this paper, a static load balance parallel method is presented by combining Message Passing Interface (MPI) with Adaptively Modified CBFM (AMCBFM). In this method, the object geometry is partitioned into distinct blocks, and the serial number of blocks is sent to related nodes according to a certain rule. Every node only needs to calculate the information on local blocks. The obtained results confirm the accuracy and efficiency of the proposed method in speeding up solving large electrical scale problems.