A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban...A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a ...To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.展开更多
In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feedin...In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.展开更多
The Peak to Average power Ratio (PAR) of a Multi-Band Orthogonal Frequency-Division Multiplexing (MB-OFDM) Ultra-Wide Band (UWB) signals can be substantially larger than that of single carrier or carrier-less ultra-wi...The Peak to Average power Ratio (PAR) of a Multi-Band Orthogonal Frequency-Division Multiplexing (MB-OFDM) Ultra-Wide Band (UWB) signals can be substantially larger than that of single carrier or carrier-less ultra-wideband signals. In this letter, a novel PAR reduction scheme for the MB-OFDM UWB system based on spreading and interleaving is proposed. By spreading the coded bits over each subcarrier in corresponding band and interleaving the spread symbols across all bands, the PAR statistics of the MB-OFDM signals can be improved and the PAR is reduced obviously. In the PAR reduction scheme, there is no loss in transmission data rate or Bit Error Rate (BER) performance decreasing. Since the spreading and interleaving operation are implemented by unitary Hadamard sequences and used for an approach to provide the robustness of the UWB system to narrowband interference, there is no additional implementation burden. Simulation results show that the investigated scheme gives the PAR reduction of 3dB compared with that of the original MB-OFDM signals.展开更多
The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy me...The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.展开更多
To solve the precision self-positioning problem for mobile robot,a positioning program based on ultra-wideband technology was proposed. Ultra-wideband pulse has very high bandwidth; ranging accuracy can achieve centim...To solve the precision self-positioning problem for mobile robot,a positioning program based on ultra-wideband technology was proposed. Ultra-wideband pulse has very high bandwidth; ranging accuracy can achieve centimeter-level theoretically. The mobile robot obtained the distance to the reference node by sending ultra-wideband pulse. According to the geometric relations among the references and the robot,establish equations to calculate the position coordinates. Then Kalman filter algorithm was applied for mobile robot tracking. Simulation results show that robot positioning and tracking based on ultra-wideband technology can achieve indoor and outdoor seamless docking.展开更多
Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications...Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.展开更多
The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the ...The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the multipath fading model is assumed in this scenario. In fact to establish the model for analyzing in this article is using MC-CDMA (multi-carrier code-division multiple-access) system characterization combined with a UWB scheme. The average BER (bit error rate) is calculated and compared to a special case of previously published results. Studied results from this paper can be implied to approve the system performance for a UWB system combined with a MC-CDMA wireless communication system. It is worth noting that the Nakagami-m distributed fading parameter significantly dominates UWB system performance when it cooperates with MC signaling under a fading environment. Finally, it is worthy of noting that when the SNR (signal-to-noise ratio) at system’s receiver reaches a preset high threshold value, the parameter of power decay ratio effect could be not included.展开更多
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p...Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.展开更多
目的:观察四黄散联合间断垂直钢丝缝合加张力带对髌骨下极骨折患者膝关节活动度及骨折愈合时间的影响。方法:选取2021年9月至2022年9月丰城市中医院收治的髌骨下极骨折患者40例,按照随机数字表法分为对照组和试验组,每组20例。两组患者...目的:观察四黄散联合间断垂直钢丝缝合加张力带对髌骨下极骨折患者膝关节活动度及骨折愈合时间的影响。方法:选取2021年9月至2022年9月丰城市中医院收治的髌骨下极骨折患者40例,按照随机数字表法分为对照组和试验组,每组20例。两组患者均给予切开复位内固定,对照组给予间断垂直钢丝缝合联合张力带治疗,试验组给予四黄散联合间断垂直钢丝缝合加张力带治疗。观察两组患者术后6周、3个月、6个月、1年及末次随访时膝关节疼痛评分、屈伸活动范围(range of motion, ROM)、Bostman评分、骨折愈合时间、各项临床指标及并发症发生情况。结果:试验组术后6周、3个月、6个月、1年膝关节疼痛评分均低于对照组,差异有统计学意义(P<0.05)。试验组术后6周、3个月、6个月、1年ROM、Bostman评分高于对照组,差异有统计学意义(P<0.05)。试验组术后1年骨折愈合时间、各项临床指标均优于对照组,并发症发生率低于对照组,差异有统计学意义(P<0.05)。结论:四黄散联合间断垂直钢丝缝合加张力带能改善髌骨下极骨折患者膝关节功能,降低术后并发症发生率,促进骨折早日愈合。展开更多
A novel toggled flip-flop(TFF) divide-by-two circuit(DTC) and its optimization method based on a large-signal analysis approach are proposed.By reducing the output RC constant in tracking mode and making it large ...A novel toggled flip-flop(TFF) divide-by-two circuit(DTC) and its optimization method based on a large-signal analysis approach are proposed.By reducing the output RC constant in tracking mode and making it large in latching mode,compressing the internal signal swing as well as compensating the current leaked in the latching mode, the operating frequency range is greatly expanded.Implemented in a SMIC 0.13μm RF CMOS process with a 1.2 V power supply,it can work under an ultra-wide frequency band ranging from 320 MHz to 29.6 GHz.Experimental results show that two phase-locked loops(PLLs) with the proposed DTC can achieve in-band phase noise of-94 dBc/Hz @ 10 kHz under 4224 MHz operating frequency and-84 dBc/Hz @ 10 kHz under 10 GHz operating frequency,respectively. The power consumption of the proposed DTC is reduced by almost 50%compared with the conventional counterparts.展开更多
A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different typ...A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
文摘To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.
基金supported by the National Natural Science Foundation of China (NNSF) under Grant 61531016National Natural Science Foundation of China (NNSF) under Grant 61271090+1 种基金Sichuan province science and technology support project under Grant 2016GZ0059Sichuan province science and technology support project under Grant 2017GZ0110
文摘In this paper, a compact coplanar epsilon.negative(ENG) antenna is proposed with ultra.wide operation band and small size of 18×11.5 mm2. The proposed antenna is designed based on a coplanar.waveguide(CPW) feeding antenna, and thus the via.free structure is employed to realize the ENG unit cell, which is convenient to tune the frequency of zeroth.order resonance(ZOR) and extends the ZOR bandwidth. The high.order resonant frequencies are achieved and mainly determined by the separate slots that are located between the radiating patch and the ground plane. Adding the left.handed inductance between the radiating patch and ground has slight impact on the high.order resonant frequencies, and then the ultra.wide band is achieved by merging the ZOR bandwidth with the high.order resonant bandwidths. The ground plane primarily works as a matching network for the proposed antenna. Although it generates a low.frequency resonance, the performance is undesirable due to the impedance mismatching. The measured results show that the reflection coefficient, |S11| <.10 d B, is in a wide frequency range from 5.25 to 13 GHz, which covers the upper operation band of UWB communication. Also, the antenna contains relatively stable gains and omni.directional radiation patterns.
基金Supported by the National 863 High Technology Research Program of China (N0.2005AA123320)Universities Natural Science Research Project of Jiangsu Province (No.05KJB510101).
文摘The Peak to Average power Ratio (PAR) of a Multi-Band Orthogonal Frequency-Division Multiplexing (MB-OFDM) Ultra-Wide Band (UWB) signals can be substantially larger than that of single carrier or carrier-less ultra-wideband signals. In this letter, a novel PAR reduction scheme for the MB-OFDM UWB system based on spreading and interleaving is proposed. By spreading the coded bits over each subcarrier in corresponding band and interleaving the spread symbols across all bands, the PAR statistics of the MB-OFDM signals can be improved and the PAR is reduced obviously. In the PAR reduction scheme, there is no loss in transmission data rate or Bit Error Rate (BER) performance decreasing. Since the spreading and interleaving operation are implemented by unitary Hadamard sequences and used for an approach to provide the robustness of the UWB system to narrowband interference, there is no additional implementation burden. Simulation results show that the investigated scheme gives the PAR reduction of 3dB compared with that of the original MB-OFDM signals.
基金Project supported by the Postdoctoral Science Foundation of China(Grant No.2014M552610)
文摘The modern landmine's electronic fuse is susceptible to strong interference or can even be damaged by the ultra-wide band electromagnetic pulse(UWB-EMP). The finite-difference time-domain(FDTD) method in lossy media with cylindrical coordinates is used to study the interactions of the UWB-EMP with the landmine. First, the coupling of UWB-EMP into the landmine shielding shell through an aperture is numerically simulated. Second, the coupled electromagnetic field of mine shells made of different shielding materials and with apertures of different sizes is plotted. Third, the aperture coupling laws of UWB-EMP into shells are analyzed and categorized. Such an algorithm is capable of effectively preventing ladder similar errors, and consequently improving the calculation precision, and in addition to adopting the message passing interface(MPI) parallel method to divide the total calculating range into more sub-ranges, the overall calculating efficiency is greatly increased. These calculations are surely a constructive reference for modern landmine design against electromagnetic damage.
基金High Technology Research and Development Program(863program) of China (No.2007AA041604)
文摘To solve the precision self-positioning problem for mobile robot,a positioning program based on ultra-wideband technology was proposed. Ultra-wideband pulse has very high bandwidth; ranging accuracy can achieve centimeter-level theoretically. The mobile robot obtained the distance to the reference node by sending ultra-wideband pulse. According to the geometric relations among the references and the robot,establish equations to calculate the position coordinates. Then Kalman filter algorithm was applied for mobile robot tracking. Simulation results show that robot positioning and tracking based on ultra-wideband technology can achieve indoor and outdoor seamless docking.
文摘Theoretical calculations predict transition frequencies in the terahertz range for the field-effect transistors based on carbon nanotubes, and this shows their suitability for being used in high frequency applications. In this paper, we have designed a field-effect transistor based on carbon nanotube with high transition frequency suitable for ultra-wide band applications. We did this by optimizing nanotube diameter, gate insulator thickness and dielectric constant. As a result, we achieved the transition frequency about 7.45 THz. The environment of open source software FETToy is used to simulate the device. Also a suitable model for calculating the transition frequency is presented.
文摘The evaluation of System Performance of UWB (ultra-wide band) jointing in MC (multi-carrier) signaling in correlated environments is presented in the report. The correlated Nakagami-m statistical distribution for the multipath fading model is assumed in this scenario. In fact to establish the model for analyzing in this article is using MC-CDMA (multi-carrier code-division multiple-access) system characterization combined with a UWB scheme. The average BER (bit error rate) is calculated and compared to a special case of previously published results. Studied results from this paper can be implied to approve the system performance for a UWB system combined with a MC-CDMA wireless communication system. It is worth noting that the Nakagami-m distributed fading parameter significantly dominates UWB system performance when it cooperates with MC signaling under a fading environment. Finally, it is worthy of noting that when the SNR (signal-to-noise ratio) at system’s receiver reaches a preset high threshold value, the parameter of power decay ratio effect could be not included.
文摘Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm.
文摘目的:观察四黄散联合间断垂直钢丝缝合加张力带对髌骨下极骨折患者膝关节活动度及骨折愈合时间的影响。方法:选取2021年9月至2022年9月丰城市中医院收治的髌骨下极骨折患者40例,按照随机数字表法分为对照组和试验组,每组20例。两组患者均给予切开复位内固定,对照组给予间断垂直钢丝缝合联合张力带治疗,试验组给予四黄散联合间断垂直钢丝缝合加张力带治疗。观察两组患者术后6周、3个月、6个月、1年及末次随访时膝关节疼痛评分、屈伸活动范围(range of motion, ROM)、Bostman评分、骨折愈合时间、各项临床指标及并发症发生情况。结果:试验组术后6周、3个月、6个月、1年膝关节疼痛评分均低于对照组,差异有统计学意义(P<0.05)。试验组术后6周、3个月、6个月、1年ROM、Bostman评分高于对照组,差异有统计学意义(P<0.05)。试验组术后1年骨折愈合时间、各项临床指标均优于对照组,并发症发生率低于对照组,差异有统计学意义(P<0.05)。结论:四黄散联合间断垂直钢丝缝合加张力带能改善髌骨下极骨折患者膝关节功能,降低术后并发症发生率,促进骨折早日愈合。
基金Project supported by the National High Technology Research and Development Program of China(No.SQ2008AA01Z4473469)
文摘A novel toggled flip-flop(TFF) divide-by-two circuit(DTC) and its optimization method based on a large-signal analysis approach are proposed.By reducing the output RC constant in tracking mode and making it large in latching mode,compressing the internal signal swing as well as compensating the current leaked in the latching mode, the operating frequency range is greatly expanded.Implemented in a SMIC 0.13μm RF CMOS process with a 1.2 V power supply,it can work under an ultra-wide frequency band ranging from 320 MHz to 29.6 GHz.Experimental results show that two phase-locked loops(PLLs) with the proposed DTC can achieve in-band phase noise of-94 dBc/Hz @ 10 kHz under 4224 MHz operating frequency and-84 dBc/Hz @ 10 kHz under 10 GHz operating frequency,respectively. The power consumption of the proposed DTC is reduced by almost 50%compared with the conventional counterparts.
文摘A small-sized, low-profile, and planar dual band antenna for Bluetooth (2.4 - 2.484 GHz) and ultra-wideband (UWB) (3.1 - 10.6 GHz) with multi-band notched antennas is presented. Two antennas A and B with different types of slots are used to obtain tri-band notched characteristic. In antenna A notched bands, 5 - 6 GHz for WLAN, and 3.3 - 4 GHz for WiMAX, are achieved using a U-slot in ground structure and in the radiating patch. In antenna B two notched bands at 3.3 - 4 GHz, for WiMAX and 7.2 GHz for C-band satellite communication systems are achieved by using a U-slot in ground structure and a H-shaped slot in the radiating patch. The radiation characteristics of the two antennas are calculated using a commercial EM simulator based on Finite Element Method (FEM) and the Finite Integration Technique (FIT). The two antennas show acceptable gain flatness with stable omnidirectional radiation patterns across the integrated Bluetooth and UWB bands.