The microwave photonic technology-based Ultra-Wideband (UWB) Radio over Fiber (RoF) system is an important solution to the future low-cost and high-performance ultra-wideband wireless access network.Much research work...The microwave photonic technology-based Ultra-Wideband (UWB) Radio over Fiber (RoF) system is an important solution to the future low-cost and high-performance ultra-wideband wireless access network.Much research work has been done in this field with abundant results.This article introduces the RoF system that is based on the all-optical vector modulation technology to further enhance signal’s spectrum efficiency;the full-duplex RoF system that is based on the millimeter wave Phase-Shift Keying (PSK) modulation to greatly simplify base station structure and fiber layout;and the RoF system that is based on multi-service mixed transmission to carry the service with both wired signal and several wireless signals.The article also presents an RoF-based high-definition video transmission platform.展开更多
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based...High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.展开更多
基金supported by the National High Technology Research and Development Program("863" Program)under Grant No.2007AA01Z264 and 2006AA01Z256the National Natural Science Foundation under Grant No.60736002 and 60702006
文摘The microwave photonic technology-based Ultra-Wideband (UWB) Radio over Fiber (RoF) system is an important solution to the future low-cost and high-performance ultra-wideband wireless access network.Much research work has been done in this field with abundant results.This article introduces the RoF system that is based on the all-optical vector modulation technology to further enhance signal’s spectrum efficiency;the full-duplex RoF system that is based on the millimeter wave Phase-Shift Keying (PSK) modulation to greatly simplify base station structure and fiber layout;and the RoF system that is based on multi-service mixed transmission to carry the service with both wired signal and several wireless signals.The article also presents an RoF-based high-definition video transmission platform.
基金supported in part by the National Natural Science Foundation of China under Grant No.61771474in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX212243+2 种基金in part by the Young Talents of Xuzhou Science and Technology Plan Project under Grant No.KC19051in part by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2021D02in part by the Open Fund of Information Photonics and Optical Communications (IPOC) (BUPT)。
文摘High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.