This paper treats the digital design of a probabilistic energy equalizer for impulse radio (IR) UWB receiver in high data rate (100Mbps). The aim of this study is to bypass certain complex mathematical function as a c...This paper treats the digital design of a probabilistic energy equalizer for impulse radio (IR) UWB receiver in high data rate (100Mbps). The aim of this study is to bypass certain complex mathematical function as a chi-squared distribution and reduce the computational complexity of the equalizer for a low cost hardware implementation. As in Sub-MAP algorithm, the max* operation is investigated for complexity reduction and tested by computer simulation with fixed point data types under 802.15.3a channel models. The obtained re-sults prove that the complexity reduction involves a very slight algorithm deterioration and still meet the low-cost constraint of the implementation.展开更多
We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transm...We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed and its performance is compared. By utilizing optimum UWB pulse design and employing a digital signal processing (DSP) receiver, a bit-error-rate above the forward error correction (FEC) limit for 8 meters of wireless'emis- sion is obtained in our photonic generation UWB system. A noticeable increase in the channel capacity is achieved compared to previously reported results.展开更多
In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform f...In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform for many applications like: medical, agriculture, industrial, monitoring and others. The challenge of this work consists in proposing a new design of transceiver for WSN based on IDWPT (Inverse Discrete Wavelet Packet Transform) in emitter and DWPT (Discrete Wavelet Packet Transform) in receiver for mono and multi users using AWGN Channel. We will propose in this paper, a new concept of impulse radio communication for multiband orthogonal communication for UWB (Ultra-wideband) applications. The main objective of this work is to present a new form of pulse communication adapted to low through-put short-range applications and is scalable according to the type of use but also the number of sensors.展开更多
Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the ...Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.展开更多
This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. M...This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.展开更多
In view of the inaccuracy of the estimated symbols on the edge of the observation window, a decision-feedback subset aided multiple-symbol differential detection(MSDD) framework, dubbed DF-S-MSDD, is proposed in ultra...In view of the inaccuracy of the estimated symbols on the edge of the observation window, a decision-feedback subset aided multiple-symbol differential detection(MSDD) framework, dubbed DF-S-MSDD, is proposed in ultra-wideband impulse radio(UWB-IR) system with differential space-time block-code(DSTBC) modulation. Specifically, motivated by the decision-feedback aided MSDD(DF-MSDD), a subset of the decision-feedback symbols is selected, and the optimal symbols are preserved, and then all the remaining symbols are optimized. Furthermore, the simulations validate that the proposed DF-S-MSDD provides solid bit error-rate performance with a low complexity in UWB-IR system with DSTBC modulation.展开更多
In this letter,we propose a hybrid analog/digital detection algorithm,the Correlated In-terference Cancellation(CIC) algorithm,for Impulse Radio Ultra-WideBand(IR-UWB) system.The CIC algorithm correlates received sign...In this letter,we propose a hybrid analog/digital detection algorithm,the Correlated In-terference Cancellation(CIC) algorithm,for Impulse Radio Ultra-WideBand(IR-UWB) system.The CIC algorithm correlates received signal with its delayed versions in the analog domain and samples the correlation output at the symbol rate.The symbol rate samples are processed in the digital domain to perform interference cancellation.Therefore,CIC works for high data rate systems with heavy In-terSymbol Interference(ISI).Simulation results show that CIC achieves good performance in typical UWB channels.展开更多
A CMOS fifth-derivative Gaussian pulse generator is presented for ultra-wideband (UWB) applications. The design exhibits low power consumption, low circuit complexity, and a precise pulse shape to inherently comply ...A CMOS fifth-derivative Gaussian pulse generator is presented for ultra-wideband (UWB) applications. The design exhibits low power consumption, low circuit complexity, and a precise pulse shape to inherently comply with the FCC spectrum mask for indoor UWB applications without the need for a filter. The pulse generator is implemented with a 1.8-V, 0.18-μm CMOS process. The small core chip size of the pulse generator is only 217 ×121 #m2 because of its all digital circuit design. The measured fifth-derivative Gaussian pulse has a peak-to-peak amplitude of 158 mV and a pulse width of 800 ps. The average power dissipation is 0.6 mW with a pulse repetition frequency of 50 MHz.展开更多
文摘This paper treats the digital design of a probabilistic energy equalizer for impulse radio (IR) UWB receiver in high data rate (100Mbps). The aim of this study is to bypass certain complex mathematical function as a chi-squared distribution and reduce the computational complexity of the equalizer for a low cost hardware implementation. As in Sub-MAP algorithm, the max* operation is investigated for complexity reduction and tested by computer simulation with fixed point data types under 802.15.3a channel models. The obtained re-sults prove that the complexity reduction involves a very slight algorithm deterioration and still meet the low-cost constraint of the implementation.
基金supported by a Marie Curie International Incoming Fellow-ship and ICT-ALPHA Project within the 7th European Community Framework Programme
文摘We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed and its performance is compared. By utilizing optimum UWB pulse design and employing a digital signal processing (DSP) receiver, a bit-error-rate above the forward error correction (FEC) limit for 8 meters of wireless'emis- sion is obtained in our photonic generation UWB system. A noticeable increase in the channel capacity is achieved compared to previously reported results.
文摘In last few years, several recent developments concern a new proposed techniques of communication for WSN (Wireless Sensors Network) using a complex methods and technics. This network is considered a future platform for many applications like: medical, agriculture, industrial, monitoring and others. The challenge of this work consists in proposing a new design of transceiver for WSN based on IDWPT (Inverse Discrete Wavelet Packet Transform) in emitter and DWPT (Discrete Wavelet Packet Transform) in receiver for mono and multi users using AWGN Channel. We will propose in this paper, a new concept of impulse radio communication for multiband orthogonal communication for UWB (Ultra-wideband) applications. The main objective of this work is to present a new form of pulse communication adapted to low through-put short-range applications and is scalable according to the type of use but also the number of sensors.
基金This work was supported by the National Key Research and Development Program of China(2018YFC0810202)the National Defence Pre-research Foundation of China(61404130119).
文摘Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.
文摘This paper introduces a human gesture recognition algorithm using an impulse radio ultra-wide- band (IR-UWB) radar sensor. Human gesture recognition has been one of the hottest research topics for quite a long time. Many gesture recognition algorithms or systems using other sensors have been proposed such as using cameras, RFID tags and so on. Among which gesture recognition systems using cameras have been extensively studied in past years and widely used in practical. While it might show some deficiencies in some cases. For example, the users might not like to be filmed by cameras considering their privacies. Besides, it might not work well in very dark environments. While RFID tags could be inconvenient to many people and are likely to be lost. Our gesture recognition algorithm uses IR-UWB radar sensor which has pretty high resolution in ranging and adjustable gesture recognition range, meanwhile, does not have problems in privacy issues or darkness. In this paper, the gesture recognition algorithm is based on the moving direction and distance change of the human hand and the change of the frontal surface area of hand towards radar sensor. By combining these changes while doing gestures, the algorithm may recognize basically 6 kinds of hand gestures. The experimental results show that these gestures are of quite good performance. The performance analysis from experiments is also given.
基金Supported by the National Natural Science Foundation of China(No.61562058)Lanzhou University of Technology Hongliu Excellent Youth Talent Support Program。
文摘In view of the inaccuracy of the estimated symbols on the edge of the observation window, a decision-feedback subset aided multiple-symbol differential detection(MSDD) framework, dubbed DF-S-MSDD, is proposed in ultra-wideband impulse radio(UWB-IR) system with differential space-time block-code(DSTBC) modulation. Specifically, motivated by the decision-feedback aided MSDD(DF-MSDD), a subset of the decision-feedback symbols is selected, and the optimal symbols are preserved, and then all the remaining symbols are optimized. Furthermore, the simulations validate that the proposed DF-S-MSDD provides solid bit error-rate performance with a low complexity in UWB-IR system with DSTBC modulation.
基金863 project (No.2007AA01Z2B1)Natural Science Foundation of Jiangsu Province (No.BK2005409)Jiangsu "Six-Top" Project (No.07-E-018)
文摘In this letter,we propose a hybrid analog/digital detection algorithm,the Correlated In-terference Cancellation(CIC) algorithm,for Impulse Radio Ultra-WideBand(IR-UWB) system.The CIC algorithm correlates received signal with its delayed versions in the analog domain and samples the correlation output at the symbol rate.The symbol rate samples are processed in the digital domain to perform interference cancellation.Therefore,CIC works for high data rate systems with heavy In-terSymbol Interference(ISI).Simulation results show that CIC achieves good performance in typical UWB channels.
文摘A CMOS fifth-derivative Gaussian pulse generator is presented for ultra-wideband (UWB) applications. The design exhibits low power consumption, low circuit complexity, and a precise pulse shape to inherently comply with the FCC spectrum mask for indoor UWB applications without the need for a filter. The pulse generator is implemented with a 1.8-V, 0.18-μm CMOS process. The small core chip size of the pulse generator is only 217 ×121 #m2 because of its all digital circuit design. The measured fifth-derivative Gaussian pulse has a peak-to-peak amplitude of 158 mV and a pulse width of 800 ps. The average power dissipation is 0.6 mW with a pulse repetition frequency of 50 MHz.