We demonstrate theoretically that photoassociated molecules can be stabilized to deeply bound states. This process is achieved by transferring the population from the outer well to the inner well using the optimal con...We demonstrate theoretically that photoassociated molecules can be stabilized to deeply bound states. This process is achieved by transferring the population from the outer well to the inner well using the optimal control theory, the Cs2 molecule is taken as an example. Numerical calculations show that weakly bound molecules formed in the outer well by a pump pulse can be compressed to the inner well via a vibrational level of the ground electronic state as an intermediary by an additionally optimized laser pulse. The positively chirped pulse can enhance the population of the target state. With a transform-limited dump pulse, nearly all the photoassociated molecules in the inner well of the excited electronic state can be transferred to the deeply vibrational level of the ground electronic state.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974024)the SRFDP, China (Grant No. 20090041110025)
文摘We demonstrate theoretically that photoassociated molecules can be stabilized to deeply bound states. This process is achieved by transferring the population from the outer well to the inner well using the optimal control theory, the Cs2 molecule is taken as an example. Numerical calculations show that weakly bound molecules formed in the outer well by a pump pulse can be compressed to the inner well via a vibrational level of the ground electronic state as an intermediary by an additionally optimized laser pulse. The positively chirped pulse can enhance the population of the target state. With a transform-limited dump pulse, nearly all the photoassociated molecules in the inner well of the excited electronic state can be transferred to the deeply vibrational level of the ground electronic state.