Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact...Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.展开更多
With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within...With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within the linear excitation range reveals that electron-phonon coupling and dissipation of photon energy into the bulk of the crystal take tens of picoseconds.On the other hand,the observed spin dynamics indicate a longer time of about 120 ps.To further understand how the lattice degree of freedom is coupled with these dynamics may require the integration of an ultrafast diffraction probe.展开更多
Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelli...Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.展开更多
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f...Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.展开更多
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here...Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.展开更多
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g...Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.展开更多
Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techn...Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
Understanding laser induced ultrafast processes with complex three-dimensional(3D)geometries and extreme property evolution offers a unique opportunity to explore novel physical phenomena and to overcome the manufactu...Understanding laser induced ultrafast processes with complex three-dimensional(3D)geometries and extreme property evolution offers a unique opportunity to explore novel physical phenomena and to overcome the manufacturing limitations.Ultrafast imaging offers exceptional spatiotemporal resolution and thus has been considered an effective tool.However,in conventional single-view imaging techniques,3D information is projected on a two-dimensional plane,which leads to significant information loss that is detrimental to understanding the full ultrafast process.Here,we propose a quasi-3D imaging method to describe the ultrafast process and further analyze spatial asymmetries of laser induced plasma.Orthogonally polarized laser pulses are adopted to illuminate reflection-transmission views,and binarization techniques are employed to extract contours,forming the corresponding two-dimensional matrix.By rotating and multiplying the two-dimensional contour matrices obtained from the dual views,a quasi-3D image can be reconstructed.This successfully reveals dual-phase transition mechanisms and elucidates the diffraction phenomena occurring outside the plasma.Furthermore,the quasi-3D image confirms the spatial asymmetries of the picosecond plasma,which is difficult to achieve with two-dimensional images.Our findings demonstrate that quasi-3D imaging not only offers a more comprehensive understanding of plasma dynamics than previous imaging methods,but also has wide potential in revealing various complex ultrafast phenomena in related fields including strong-field physics,fluid dynamics,and cutting-edge manufacturing.展开更多
Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. U...Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer.展开更多
Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly re...Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.展开更多
Direct collection of uranium from low uranium systems via adsorption remains challenging.Fibrous sorbent materials with amidoxime(AO)groups are promising adsorbents for uranium extraction from seawater.However,low AO ...Direct collection of uranium from low uranium systems via adsorption remains challenging.Fibrous sorbent materials with amidoxime(AO)groups are promising adsorbents for uranium extraction from seawater.However,low AO adsorption group utilization remains an issue.We herein fabricated a branched structure containing AO groups on polypropylene/polyethylene spun-laced nonwoven(PP/PE SNW)fibers using grafting polymerization induced by radiation(RIGP)to improve AO utilization.The chemical structures,thermal properties,and surface morphologies of the raw and treated PP/PE SNW fibers were studied.The results show that an adsorptive functional layer with a branching structure was successfully anchored to the fiber surface.The adsorption properties were investigated using batch adsorption experiments in simulated seawater with an initial uranium concentration of 500μg·L^(−1)(pH 4,25℃).The maximum adsorption capacity of the adsorbent material was 137.3 mg·g^(−1)within 24 h;moreover,the uranyl removal reached 96%within 240 min.The adsorbent had an AO utilization rate of 1/3.5 and was stable over a pH range of 4–10,with good selectivity and reusability,demonstrating its potential for seawater uranium extraction.展开更多
An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature...An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.展开更多
In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic ...In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism.展开更多
Ultrashort pulse transmission has been recognized as a primary problem that fundamentally hinders the development of ultrafast electronics beyond the current nanosecond timescale.This requires a transmission line or w...Ultrashort pulse transmission has been recognized as a primary problem that fundamentally hinders the development of ultrafast electronics beyond the current nanosecond timescale.This requires a transmission line or waveguide that exhibits an all-pass frequency behavior for the transmitted ultrashort pulse signals.However,this type of waveguiding structure has not yet been practically developed;groundbreaking innovations and advances in signal transmission technology are urgently required to address this scenario.Herein,we present a synthesized all-pass waveguide that demonstrates record guidedwave controlling capabilities,including eigenmode reshaping,polarization rotation,loss reduction,and dispersion improvement.We experimentally developed two waveguides for use in ultrabroad frequency ranges(direct current(DC)-to-millimeter-wave and DC-to-terahertz).Our results suggest that the waveguides can efficiently transmit picosecond electrical pulses while maintaining signal integrity.This waveguide technology is an important breakthrough in the evolution of ultrafast electronics,providing a path towards frequency-engineered ultrashort pulses for low-loss and low-dispersion transmissions.展开更多
Two-dimensional transition metal dichalcogenides(TMDs)have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices.In this work,we synthesized monolay...Two-dimensional transition metal dichalcogenides(TMDs)have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices.In this work,we synthesized monolayer WS_(2)as an example to study the optical response with hydrostatic pressure.The Raman results show a continuous tuning of the lattice vibrations that is induced by hydrostatic pressure.We further demonstrate an efficient pressure-induced change of the band structure and carrier dynamics via transient absorption measurements.We found that two time constants can be attributed to the capture process of two kinds of defect states,with the pressure increasing from 0.55 GPa to 2.91 GPa,both of capture processes were accelerated,and there is an inflection point within the pressure range of 1.56 GPa to 1.89 GPa.Our findings provide valuable information for the design of future optoelectronic devices.展开更多
It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray s...It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray streak camera equipped with a row of multi-pinhole arrays. By processing multiple sets of one-dimensional streaked image data acquired from various pinholes, we are capable of reconstructing high-resolution two-dimensional images with a temporal resolution of 38 ps and a spatial resolution of 18 μm. The temporal fiducial pulses accessed from external sources can advance the precise timing and accurately determine the arrival time of the laser. Moreover, it can correct the nonlinear sweeping speed of the streak camera. The effectiveness of this diagnostic has been successfully verified at the Shenguang-II laser facility,providing an indispensable tool for observing complex physical phenomena, such as the implosion process of laser-fusion experiments.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12374223)Shenzhen Science and Technology Program(Grant No.20231117151322001).
文摘Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1604402 and 2022YFA1604403)the National Natural Science Foundation of China (NSFC) (Grant No. 11721404)+3 种基金the Shanghai Rising-Star Program (Grant No. 21QA1406100)the Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1416000)support by the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-20-10139)the Texas A&M Engineering Experimental Station (TEES)
文摘With the integration of ultrafast reflectivity and polarimetry probes,we observed carrier relaxation and spin dynamics induced by ultrafast laser excitation of Ni(111)single crystals.The carrier relaxation time within the linear excitation range reveals that electron-phonon coupling and dissipation of photon energy into the bulk of the crystal take tens of picoseconds.On the other hand,the observed spin dynamics indicate a longer time of about 120 ps.To further understand how the lattice degree of freedom is coupled with these dynamics may require the integration of an ultrafast diffraction probe.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(No.20231120171032001,20231122125728001).
文摘Fire warning is vital to human life,economy and ecology.However,the development of effective warning systems faces great challenges of fast response,adjustable threshold and remote detecting.Here,we propose an intelligent self-powered remote IoT fire warning system,by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films.The flexible films,prepared by a convenient solution mixing,display p-type characteristic with excellent high-temperature stability,flame retardancy and TE(power factor of 239.7±15.8μW m^(-1) K^(-2))performances.The comprehensive morphology and structural analyses shed light on the underlying mechanisms.And the assembled TE devices(TEDs)exhibit fast fire warning with adjustable warning threshold voltages(1–10 mV).Excitingly,an ultrafast fire warning response time of~0.1 s at 1 mV threshold voltage is achieved,rivaling many state-of-the-art systems.Furthermore,TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure.Finally,a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier,analogto-digital converter and Bluetooth module.By combining TE characteristics,high-temperature stability and flame retardancy with wireless IoT signal transmission,TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110250,2021B1515120041)+1 种基金the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020IVA068,2021lll007JC)
文摘Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2019YFE 03030004)National Natural Science Foundation of China (Nos. 11535013 and 11975232)
文摘Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.
基金supported by the National Natural Science Foundation of China(Nos.12174444 and 52202195)the Natural Science Foundation of Hunan Province(2020RC3032)。
文摘Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.
基金funded by the National Natural Science FoundationofChina(No.92156024and No.92356307 to Jinquan Chen)Menghui Jia thanks the Materials Characterization Center and the Office of Laboratory and Equipment of East China Normal University for funding support(ECNUETR2023-13).
文摘Chirality hold broad applications in life sciences,quantum devices,and various other areas.Traditionally,molecular chirality can be characterized by using steady-state circular dichroism spectroscopy.However,the techniques that can characterize excited state chirality are progressively capturing the public interest as it can provide the dynamic information for chirality generation and transfer.In this review,we focus on the theoretical background and the developmental history of femtosecond time-resolved circular dichroism spectroscopy(TRCD)techniques around the world.Additionally,we provide examples to showcase the utility of these techniques in the analysis of the dynamical molecular chemical structures,the investigation of molecular chirality generation,and the detection of electron spin dynamics in semiconductor quantum dots.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
文摘Understanding laser induced ultrafast processes with complex three-dimensional(3D)geometries and extreme property evolution offers a unique opportunity to explore novel physical phenomena and to overcome the manufacturing limitations.Ultrafast imaging offers exceptional spatiotemporal resolution and thus has been considered an effective tool.However,in conventional single-view imaging techniques,3D information is projected on a two-dimensional plane,which leads to significant information loss that is detrimental to understanding the full ultrafast process.Here,we propose a quasi-3D imaging method to describe the ultrafast process and further analyze spatial asymmetries of laser induced plasma.Orthogonally polarized laser pulses are adopted to illuminate reflection-transmission views,and binarization techniques are employed to extract contours,forming the corresponding two-dimensional matrix.By rotating and multiplying the two-dimensional contour matrices obtained from the dual views,a quasi-3D image can be reconstructed.This successfully reveals dual-phase transition mechanisms and elucidates the diffraction phenomena occurring outside the plasma.Furthermore,the quasi-3D image confirms the spatial asymmetries of the picosecond plasma,which is difficult to achieve with two-dimensional images.Our findings demonstrate that quasi-3D imaging not only offers a more comprehensive understanding of plasma dynamics than previous imaging methods,but also has wide potential in revealing various complex ultrafast phenomena in related fields including strong-field physics,fluid dynamics,and cutting-edge manufacturing.
基金National Natural Science Foundation of China(Grant No.11832006,U1530262,21975024).
文摘Aluminum(Al) particles are good fuel additives to improve the energy output performances of explosives. Under detonation environment, reaction delay of Al particles plays a key role in the energy release efficiency. Up to date, reaction delay of Al particles is still limited by the efficiency of mass and heat transfer from oxidizers to Al particles. To address this issue, a homogeneous fuel-oxidizer assembly has recently become a promising strategy. In this work, oxidizer-activated Al fuel particles(ALG) were prepared with glycidyl azide polymer(GAP) as the oxidizer. The ALG was in uniform spherical shape and core-shell structure with shell layer of around 5 nm which was observed by scanning electron microscope and transmission electron microscope. The localized nanoscale mid-IR measurement detected the uniform distribution of characteristic absorption bond of GAP in the shell layer which confirmed the homogenous fuel-oxidizer structure of ALG. A thermal gravimetric analysis of ALG at ultrafast heating rate of 1000℃/min under argon atmosphere was conducted. The decomposition of GAP finished much earlier than that of GAP at heating rate of 10℃/min. Under ultrafast high laser fluence, the reaction response of ALG was characterized and compared with that of micro-sized Al(μAl). With the increase of laser energy, the propagation distance of the shock wave increased. However, the velocity histories were nearly the same when energies were lower than 299 mJ or higher than 706 mJ. The propagation distance of the shock wave for ALG was 0.5 mm larger than that for μAl at 2.1 μs. The underwater explosion showed the peak pressure and the shock wave energy of the ALG-based explosive were both higher than those of the μAl-based explosive at 2.5 m. This study shows the feasibility to improve the energy release of Al-based explosives via using the oxidizer-activated Al fuel particles with energetic polymer as the oxidizer.
基金the NSFC(22075019)National Key R&D Program of China(2017YFB1104300)。
文摘Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field.However,most of the synthetic routes at present mainly rely on traditional bottom-up method,which involves tedious steps,time-consuming treatments,or additional alkaline media,and is unfavorable for high-efficiency production.Herein,we present a facile,ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method.With high reaction kinetics caused by the instantaneous high temperature,seven kinds of transition metal-layered hydroxides(TM-LDHs)are formed on carbon cloth.Therein,the fastest synthesis rate reaches~0.46 cm^(2)s^(-1).Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates.This efficient approach avoids the use of extra agents,multiple steps,and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability,showing practical advantages in both common and micro-zinc ion-based energy storage devices.To prove its utility,as a cathode in rechargeable aqueous alkaline Zn(micro-)battery,the NiCo LDH@carbon cloth exhibits a high energy density,superior to most transition metal LDH materials reported so far.
基金supported by the National Natural Science Foundation of China(Nos.11675247,22176194).
文摘Direct collection of uranium from low uranium systems via adsorption remains challenging.Fibrous sorbent materials with amidoxime(AO)groups are promising adsorbents for uranium extraction from seawater.However,low AO adsorption group utilization remains an issue.We herein fabricated a branched structure containing AO groups on polypropylene/polyethylene spun-laced nonwoven(PP/PE SNW)fibers using grafting polymerization induced by radiation(RIGP)to improve AO utilization.The chemical structures,thermal properties,and surface morphologies of the raw and treated PP/PE SNW fibers were studied.The results show that an adsorptive functional layer with a branching structure was successfully anchored to the fiber surface.The adsorption properties were investigated using batch adsorption experiments in simulated seawater with an initial uranium concentration of 500μg·L^(−1)(pH 4,25℃).The maximum adsorption capacity of the adsorbent material was 137.3 mg·g^(−1)within 24 h;moreover,the uranyl removal reached 96%within 240 min.The adsorbent had an AO utilization rate of 1/3.5 and was stable over a pH range of 4–10,with good selectivity and reusability,demonstrating its potential for seawater uranium extraction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12274168 and 12074141)。
文摘An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.
基金Project supported by the National Natural Science Foundation of China (Grant No.61774001)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,China (Grant No.KF202203)+1 种基金the NSF of Changsha City (Grant No.kq2208008)the NSF of Hunan Province (Grant No.2023JJ30116)。
文摘In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism.
基金supported in part by the Natural Sciences and Engineering Research Council of Canada(NSERC)Discovery Grantin part by the NSERC–Huawei Industrial Research Chair Program。
文摘Ultrashort pulse transmission has been recognized as a primary problem that fundamentally hinders the development of ultrafast electronics beyond the current nanosecond timescale.This requires a transmission line or waveguide that exhibits an all-pass frequency behavior for the transmitted ultrashort pulse signals.However,this type of waveguiding structure has not yet been practically developed;groundbreaking innovations and advances in signal transmission technology are urgently required to address this scenario.Herein,we present a synthesized all-pass waveguide that demonstrates record guidedwave controlling capabilities,including eigenmode reshaping,polarization rotation,loss reduction,and dispersion improvement.We experimentally developed two waveguides for use in ultrabroad frequency ranges(direct current(DC)-to-millimeter-wave and DC-to-terahertz).Our results suggest that the waveguides can efficiently transmit picosecond electrical pulses while maintaining signal integrity.This waveguide technology is an important breakthrough in the evolution of ultrafast electronics,providing a path towards frequency-engineered ultrashort pulses for low-loss and low-dispersion transmissions.
基金This work was supported by Shenzhen Science and Technology Innovation Commission(JCYJ20220530153004010).
文摘Two-dimensional transition metal dichalcogenides(TMDs)have intriguing physic properties and offer an exciting platform to explore many features that are important for future devices.In this work,we synthesized monolayer WS_(2)as an example to study the optical response with hydrostatic pressure.The Raman results show a continuous tuning of the lattice vibrations that is induced by hydrostatic pressure.We further demonstrate an efficient pressure-induced change of the band structure and carrier dynamics via transient absorption measurements.We found that two time constants can be attributed to the capture process of two kinds of defect states,with the pressure increasing from 0.55 GPa to 2.91 GPa,both of capture processes were accelerated,and there is an inflection point within the pressure range of 1.56 GPa to 1.89 GPa.Our findings provide valuable information for the design of future optoelectronic devices.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030700 and XDA25030500)the National Key R&D Program of China (Grant Nos. 2022YFA1603200 and 2022YFA1603203)the National Natural Science Foundation of China (Grant Nos. 12175018, 12135001, 12075030, and 11903006)。
文摘It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray streak camera equipped with a row of multi-pinhole arrays. By processing multiple sets of one-dimensional streaked image data acquired from various pinholes, we are capable of reconstructing high-resolution two-dimensional images with a temporal resolution of 38 ps and a spatial resolution of 18 μm. The temporal fiducial pulses accessed from external sources can advance the precise timing and accurately determine the arrival time of the laser. Moreover, it can correct the nonlinear sweeping speed of the streak camera. The effectiveness of this diagnostic has been successfully verified at the Shenguang-II laser facility,providing an indispensable tool for observing complex physical phenomena, such as the implosion process of laser-fusion experiments.