Using the inner-surface of polysulfone hollow fiber ultrafiltration membranes as grafted layer, the method of gas-initiation and liquid-polymerization has been studied, which aimed to adjust the diameter of the pores ...Using the inner-surface of polysulfone hollow fiber ultrafiltration membranes as grafted layer, the method of gas-initiation and liquid-polymerization has been studied, which aimed to adjust the diameter of the pores in the membranes. The degree of polymerization varied with the changes of the parameters, such as irradiation time, monomer concentration, temperature and time of polymerization and so on. The results indicated that using benzophenone(BP) which is in a gaseous condition as photo-initiator, acrylamide as graft monomer, the polyacrylamide chain was grafted on the surface of membranes. After the surface membrane being modified, the water flux and retention altered,and thus it can be seen that the diameter of the pores in the membrane was altered. These experiments contribute to finding a new way to produce the hollow fiber membrane with the small pore size and are extraordinarily worth developing and studying.展开更多
Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion va...Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.展开更多
A pilot plant study on a polyvinylchloride hollow fiber ultrafiltration membrane process was conducted for treating surface water. The membrane system was operated in the dead-end filtration mode under different const...A pilot plant study on a polyvinylchloride hollow fiber ultrafiltration membrane process was conducted for treating surface water. The membrane system was operated in the dead-end filtration mode under different constant permeate fluxes. The results show that the optimized operation (transmembrane pressure≤0.1 MPa, filtration time≤30 min) with a hydraulic cleaning (30 s) and a chemical cleaning (30 min, the chemical cleaning was performed after 16 cycles of filtration ) ensures a quite steady flux (1 100 L/(m^2·h·MPa)) and good permeate quality (turbidity<0.1 NTU). A full-scale plant can be suggested to operate with a mixed strategy of constant permeate flux mode (transmembrane pressure≤0.1 MPa) and constant transmembrane pressure mode. When the temperature of raw water becomes below 5 ℃, a constant transmembrane pressure mode should be used; otherwise a constant permeate flux mode (transmembrane pressure≤0.1 MPa) can be operated. In this way, irreversible fouling of ultrafiltration membrane can be minimized to keep a stable flux and make the life of membrane longer.展开更多
Several kinds of chloromethyl polysulfones (CMPF) with different chlorinity and reactive groups were synthesized by Friedel.crafts reaction, which could be utilized as reactively matrix membrane materials. The CMPF ...Several kinds of chloromethyl polysulfones (CMPF) with different chlorinity and reactive groups were synthesized by Friedel.crafts reaction, which could be utilized as reactively matrix membrane materials. The CMPF hollow matrix membranes were prepared with phase inversion by utilization of CMPF/additive/DMAC casting solution and CMPF as membrane materials. It was found that the effects of additive content, bore liquid and dry spinning distance on the structure of CMPF hollow fiber matrix membrane were different. A high qualified palysulfone hollow fiber chelating membrane modified with thiourea as chelating groups was prepared using CMPF as membrane matrix materials, through the reaction between thiourea and CMPF hollow fiber matrix membrane to afford the methyl iso-thiourium polysulfone. The experimental results showed that thermal drawing could increase the mechanical properties of matrix membrane, and the thermal treatment could increase the homogeneity and stability of the structure of polysulfoue hollow fiber chelating membrane modified with thiourea.展开更多
Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cros...Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SAPVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of different sodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance were investigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranes for ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SA concentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 ℃, SA-PVA/PSF hollow fiber composite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m^2·h). Besides, SA-PVA/PSF hollow fiber composite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solution on pervaporation performance.展开更多
This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water trea...This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water treatment. A specially designed acoustic sensor with a frequency of 2.5 MHz was used. The hollow fiber membranes used were polysulphone(PSf) UF membranes with MWCO 40 kDa. The wastewaters with three different oily concentrations of 100, 500 and 1 000 mg/L were investigated. Diesel oil was utilized as the primary foulant. The results show that the permeate flux declines with operation time and its value becomes lower with the increase of the oily concentration in wastewater. It is found that ultrasonic measurement can detect the fouling and cleaning processes. A new signal analysis protocol-ultrasonic reflected energy was developed. Ultrasonic reflected energy obtained indicates the deposition of oily layer as a function of operation time and its removal after cleaning. The overall flux decline is reasonably correlated with the changes in ultrasonic reflected energy. This research provides the evidence that the ultrasonic reflectometry technique is capable of monitoring membrane fouling and cleaning in hollow fiber modules.展开更多
PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exc...PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3-9. They were all negative in pure water and 1 g·L-1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L-1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.展开更多
Hollow fiber microfiltration(MF)and ultrafiltration(UF)membrane processes have been extensively used in water purification and biotechnology.However,complicated filtration hydrodynamics wield a negative influence on f...Hollow fiber microfiltration(MF)and ultrafiltration(UF)membrane processes have been extensively used in water purification and biotechnology.However,complicated filtration hydrodynamics wield a negative influence on fouling mitigation and stability of hollow fiber MF/UF membrane processes.Thus,establishing a mathematical model to understand the membrane processes is essential to guide the optimization of module configurations and to alleviate membrane fouling.Here,we present a comprehensive overview of the hollow fiber MF/UF membrane filtration models developed from different theories.The existing models primarily focus on membrane fouling but rarely on the interactions between the membrane fouling and local filtration hydrodynamics.Therefore,more simplified conceptual models and integrated reduced models need to be built to represent the real filtration behaviors of hollow fiber membranes.Future analyses considering practical requirements including complicated local hydrodynamics and nonuniform membrane properties are suggested to meet the accurate prediction of membrane filtration performance in practical application.This review will inspire the development of high-efficiency hollow fiber membrane modules.展开更多
基金The Natural Science Foundation of Beijing(No. 2021002) the National Basic Research Priorties Programme(No. 2003CCA02500)
文摘Using the inner-surface of polysulfone hollow fiber ultrafiltration membranes as grafted layer, the method of gas-initiation and liquid-polymerization has been studied, which aimed to adjust the diameter of the pores in the membranes. The degree of polymerization varied with the changes of the parameters, such as irradiation time, monomer concentration, temperature and time of polymerization and so on. The results indicated that using benzophenone(BP) which is in a gaseous condition as photo-initiator, acrylamide as graft monomer, the polyacrylamide chain was grafted on the surface of membranes. After the surface membrane being modified, the water flux and retention altered,and thus it can be seen that the diameter of the pores in the membrane was altered. These experiments contribute to finding a new way to produce the hollow fiber membrane with the small pore size and are extraordinarily worth developing and studying.
基金Project(20776161)supported by the National Natural Science Foundation of China
文摘Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.
文摘A pilot plant study on a polyvinylchloride hollow fiber ultrafiltration membrane process was conducted for treating surface water. The membrane system was operated in the dead-end filtration mode under different constant permeate fluxes. The results show that the optimized operation (transmembrane pressure≤0.1 MPa, filtration time≤30 min) with a hydraulic cleaning (30 s) and a chemical cleaning (30 min, the chemical cleaning was performed after 16 cycles of filtration ) ensures a quite steady flux (1 100 L/(m^2·h·MPa)) and good permeate quality (turbidity<0.1 NTU). A full-scale plant can be suggested to operate with a mixed strategy of constant permeate flux mode (transmembrane pressure≤0.1 MPa) and constant transmembrane pressure mode. When the temperature of raw water becomes below 5 ℃, a constant transmembrane pressure mode should be used; otherwise a constant permeate flux mode (transmembrane pressure≤0.1 MPa) can be operated. In this way, irreversible fouling of ultrafiltration membrane can be minimized to keep a stable flux and make the life of membrane longer.
基金Supported by the Natural Science Foundation of Tianjin (No.05YFJ MJC04200)
文摘Several kinds of chloromethyl polysulfones (CMPF) with different chlorinity and reactive groups were synthesized by Friedel.crafts reaction, which could be utilized as reactively matrix membrane materials. The CMPF hollow matrix membranes were prepared with phase inversion by utilization of CMPF/additive/DMAC casting solution and CMPF as membrane materials. It was found that the effects of additive content, bore liquid and dry spinning distance on the structure of CMPF hollow fiber matrix membrane were different. A high qualified palysulfone hollow fiber chelating membrane modified with thiourea as chelating groups was prepared using CMPF as membrane matrix materials, through the reaction between thiourea and CMPF hollow fiber matrix membrane to afford the methyl iso-thiourium polysulfone. The experimental results showed that thermal drawing could increase the mechanical properties of matrix membrane, and the thermal treatment could increase the homogeneity and stability of the structure of polysulfoue hollow fiber chelating membrane modified with thiourea.
基金Project supported by the National Basic Research Program of China (Grant No.2003CB615705)
文摘Using polysulfone (PSF) hollow fiber ultrafiltration membranes as the substrate, sodium alginate (SA) and polyvinyl alcohol (PVA) blend solutions as the coating solution, and maleic anhydride (MAC) as the cross-linked agent, SAPVA/PSF hollow fiber composite membranes were prepared for the dehydration of ethanol-water. The effects of different sodium alginate concentration in the coating solutions and different operating temperatures on pervaporation performance were investigated. The experimental results showed that pervaporation performance of the SA-PVA/PSF composite membranes for ethanol-water solution exhibited a high separation factor although they had a relatively low permeation flux. As SA concentration in SA-PVA coating solution was 66.7% and the operating temperature was 40 ℃, SA-PVA/PSF hollow fiber composite membrane (PS4) had a separation factor of 886 and flux of 12.6 g/(m^2·h). Besides, SA-PVA/PSF hollow fiber composite membranes (PS3 and PS4) were used for the investigation of the effect of ethanol concentration in the feed solution on pervaporation performance.
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China Projects(043612611, 05YFGDGX10000) supported by the Natural Science Foundation and Development Program of Science and Technology of Tianjin, China
文摘This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water treatment. A specially designed acoustic sensor with a frequency of 2.5 MHz was used. The hollow fiber membranes used were polysulphone(PSf) UF membranes with MWCO 40 kDa. The wastewaters with three different oily concentrations of 100, 500 and 1 000 mg/L were investigated. Diesel oil was utilized as the primary foulant. The results show that the permeate flux declines with operation time and its value becomes lower with the increase of the oily concentration in wastewater. It is found that ultrasonic measurement can detect the fouling and cleaning processes. A new signal analysis protocol-ultrasonic reflected energy was developed. Ultrasonic reflected energy obtained indicates the deposition of oily layer as a function of operation time and its removal after cleaning. The overall flux decline is reasonably correlated with the changes in ultrasonic reflected energy. This research provides the evidence that the ultrasonic reflectometry technique is capable of monitoring membrane fouling and cleaning in hollow fiber modules.
文摘PAN membrane and hydrolyzed PAN membranes with the same pore size were used to investigate the relationship between the electrokinetic property and permeation performance by streaming potential measurement and ion exchange technology. SEM and FT-IR/ATR spectra were employed to analyze the reaction and the presence of the amide groups. The thickness of the polyacrylic acid (PAA) layer on the membrane surface measured by ion-exchange titration technology increased with the reaction time, and that on membrane hydrolyzed for 50 min could reach 10.8 nm. Streaming potential measurement was used to study the influence of the carboxylic and nitrile group on the membrane surface on their separation property. Zeta potential measured in pure water had close relationship with the permeation property. This measurement also proved that there was a maximum zeta potential between zero and the concentration tested. For the ionization or dissociation of the carboxylic group on the membrane surface, treated membranes had a more flexible zeta potential range than that of the untreated membrane in the pH range of 3-9. They were all negative in pure water and 1 g·L-1 KCl solution, while the membranes hydrolyzed for 30 min and 50min had IEPs at pH 5.5 and 6.1 in 1 g·L-1 MgCl2 solution. Special inflection points of all the membranes were observed in AlCl3 solution for the positive colloid structure of Al(OH)3.
基金supported by Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08L213)National Key Research and Development Program of China(No.2020YFA0211003)+1 种基金Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0403)National Natural Science Foundation of China(No.21878230)。
文摘Hollow fiber microfiltration(MF)and ultrafiltration(UF)membrane processes have been extensively used in water purification and biotechnology.However,complicated filtration hydrodynamics wield a negative influence on fouling mitigation and stability of hollow fiber MF/UF membrane processes.Thus,establishing a mathematical model to understand the membrane processes is essential to guide the optimization of module configurations and to alleviate membrane fouling.Here,we present a comprehensive overview of the hollow fiber MF/UF membrane filtration models developed from different theories.The existing models primarily focus on membrane fouling but rarely on the interactions between the membrane fouling and local filtration hydrodynamics.Therefore,more simplified conceptual models and integrated reduced models need to be built to represent the real filtration behaviors of hollow fiber membranes.Future analyses considering practical requirements including complicated local hydrodynamics and nonuniform membrane properties are suggested to meet the accurate prediction of membrane filtration performance in practical application.This review will inspire the development of high-efficiency hollow fiber membrane modules.