Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were inves...Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was considered the best one. Experimental results showed that the effects of compaction on the streaming potential measurement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.展开更多
Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were inves...Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was con- sidered the best one. Experimental results showed that the effects of compaction on the streaming potential meas- urement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.展开更多
The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Never...The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.展开更多
Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV...Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV254 removals by the UF with in-line coagulation at pH 7 were increased from 28% to 53% and 40% to 78% in comparison with direct UF treatment respectively. At the same time, the analysis of high performance liquid chromatography showed that UF with coagulation had significant improvement of removal of humic acid with molecular weights less than 6000 Da in particular. Compared to direct UF, the in-line coagulation UF also kept more constant permeate flux and very slight increase oftransmembrane pressure during a filtration circle. Two typical membrane fouling models were used by inducing two coefficients Kc and Kp corresponding to cake filtration model and pore narrowing model respectively. It was found that membrane fouling by pore-narrowing effect was effectively alleviated and that by cake-filtration was much decreased by in-line coagulation. Under the condition of coagulation prior to ultrafiltration at pH 7, the cake layer formed on the membrane surface became thicker, but the membrane filtration resistance was lower than that at pH 5 with the extension of operation time.展开更多
Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein...Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein, we demonstrate the facile fabrication of antifouling polysulfone-block-poly(ethylene glycol)(PSF-b-PEG, SFEG)composite membranes. SFEG layer was coated onto macroporous supports and cavitated by immerging them in acetone/n-propanol following the mechanism of selective swelling induced pore generation. Thus-produced SFEG membranes possessed high permeance and excellent mechanical strength. Meanwhile, the structures and separation performances of the SFEG layers can be continuously tuned through simply changing swelling durations. More importantly, the hydrophilic PEG chains were spontaneously enriched onto the pore walls through swelling treatment, endowing intrinsic antifouling property to the SFEG membranes. Bovine serum albumin(BSA)/humic acid(HA) fouling tests proved the prominent fouling resistance of SFEG membranes, and the fouling resistance is expected to be long-standing because of the firm connection between PEG chains and PSF matrix by covalent bonding.展开更多
Polyvinylidenefluoride (PVDF) hollow fiber ultrafiltration membrane is frequently employed in water treatment. However, the fouling of ultrafiltration membranes affects the economic effectiveness of such process sig...Polyvinylidenefluoride (PVDF) hollow fiber ultrafiltration membrane is frequently employed in water treatment. However, the fouling of ultrafiltration membranes affects the economic effectiveness of such process significantly. The ultrasound generated by flat plate transducer (UFPT) was used to clean the polluted PVDF ultrafiltration membrane with 2 g·L^-1 of citric acid aqueous solution in our study. The effects of UFPT intensity on the membrane surface were studied. The new membrane was easy to be polluted by the saturated CaCl2 solution. A synergistic effect of UFPT and 2 g·L^-1 citric acid aqueous solution could remove the foul of the membrane, and its flux could be recovered about 81%. The flux recovery of old membrane polluted was increased to 73.2% after 7 h soaking in citric acid aqueous solution, but its flux recovery without soaking was only increased to 56.2%.展开更多
The sensitivity of poly(arylsulfone)(PSf) for UV irradiation in different solvents(water and ethanol) was investigated. It is confirmed that acrylic acid(AA) and acrylamide(AAm) are grafted only onto the surface of th...The sensitivity of poly(arylsulfone)(PSf) for UV irradiation in different solvents(water and ethanol) was investigated. It is confirmed that acrylic acid(AA) and acrylamide(AAm) are grafted only onto the surface of the membrane instead of the interior by FTIR and scanning electron microscope(SEM). The membrane performance(Δ J/J 0 and contact angle θ ) after photografting was studied. In the range of conditions used, the grafting yield increases with irradiation time and monomer concentration growing. After photografting and N 3 dimethyl aminopropyl N' ethycarbodiimide hydrochloride(EDC) activation, PSf membrane was immobilized with hydrogen peroxide oxidoreductase, and showed a higher activity than the control membrane.展开更多
A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the pr...A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.展开更多
Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with ...Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.展开更多
A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of ...A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of the casting solution through the holes of support layer. Felt-metal supported ferric sulfate modified PVA composite UF membranes were prepared by the innovative technology. The results show that the composite membranes are used to treat 1 000 mg/L oil/water emulsion at trans-membrane pressure from 0.25 to 0.45 MPa, the permeate flux is from 36 to 52 L/(m2·h), and the retention of chemical oxygen demand(COD) is over 92%. The composite membrane resistance increases with the increase of trans-naembrane pressure.展开更多
Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the applica...Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.展开更多
Polysulfone(PSF) is extensively used for the production of ultrafiltration(UF) membranes thanks to its high strength,chemical stability,and good processibility.However,PSF is intrinsically hydrophobic,and hydrophilic ...Polysulfone(PSF) is extensively used for the production of ultrafiltration(UF) membranes thanks to its high strength,chemical stability,and good processibility.However,PSF is intrinsically hydrophobic,and hydrophilic modification is always required to PSF-based membranes if they are intended to be used in aqueous systems.Facile strategies to prepare hydrophilic PSF membranes are thus highly demanded.Herein we spray coat a PSF-based amphiphilic block polymer onto macroporous substrates followed by selective swelling to prepare flat-sheet PSF UF membranes.The polymer is a triblock polymer containing PSF as the majority middle block tethered with shorter block of polyethylene glycol(PEG) on both ends,that is,PEG-b-PSF-b-PEG.We use the technique of spray coa ting to homogeneously dispense diluted triblock polymer solutions on the top of macroporous supports,instantly resulting in uniform,defect-free polymer coating layers with the thickness down to ~1.2 μm.The bi-layered composite structures are then immerged in ethanol/acetone mixture to generate mesoscale pores in the coating layers following the mechanism of selective swelling-induced pore generation,thus producing composite membranes with the mesoporous triblock polymer coating as the selective layers.This facile strategy is free from additional hydrophilic modification and much smaller dosages of polymers are used compared to conventional casting methods.The pore sizes,porositie s,hydrophilicity,and consequently the separation properties of the membranes can be flexibly tuned by changing the swelling duration and the composition of the swelling bath.This strategy combining spray coating and selective swelling is upscalable for the production of highperformance PSF UF membranes.展开更多
The performance and integrity of a cassette cross-flow ultrafilter (Pellicon 2, Millipore) are examined with a suite of macromolecules of different molecular masses. The retention coefficient during the cross-flow u...The performance and integrity of a cassette cross-flow ultrafilter (Pellicon 2, Millipore) are examined with a suite of macromolecules of different molecular masses. The retention coefficient during the cross-flow ultrafiltration experiments increases with increasing molecular mass and reaches 90% with 10 kDa dextran in both milli-Q water and ultrafiltered seawater media. Based on a 90% retention coefficient, the molecular mass cut-off for the ultrafiltration membrane is defined at 10 kDa, which is ten times (1 kDa) that rated by the manufacturer. To further validate the accuracy of the laboratory calibration, the samples from the lower Zhujiang River and the Jiulong River Estuary are ultrafiltered with the cassette ultrafiltration membrane and the colloidal organic carbon abundances in these samples are quantified with the ultrafiltration per- meation model based on time series permeation subsamples. The colloidal organic carbon abundances are 5.8%-21.1% in the Jiulong River Estuary and 5.6%-11.0% in the lower Zhujiang River. These are consistent with the reported values for both estuaries as well as with the colloidal organic carbon abundances in ma- rine environments over the coastal and open oceans with 10 kDa cut-off membranes. Therefore, these field data support the laboratory calibration result and indicate the validity of the experimental and quantification procedure adopted. The discrepancy between the nominal molecular mass cut-off and the actual pore size of the ultrafiltration membrane should be of great concern for research in colloidal and nanoparticle biogeochemistry. Careflfl examination of the membrane integrity should be taken during ultrafiltration ex- oeriments in order to avoid misleading molecular mass cut-off information.展开更多
In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contac...In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contact angle of MM decreases from 83. 64° to 67. 42°,which indicates the increase of the hydrophilicity of MM. The relative flux (RF) decline curve of this ultrafiltration of APAM in water with time shows an obvious two stage properties. The cake filtration models were used to predict the performance of different time over the complete range of filtration times. All the four cake models could simulate this UF process to a certain extent,and the suitability of the two kinds of membranes was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However,they became more and more unsuited to this process with time extending. Surface and cross-sectional morphology of membrane was investigated by SEM to make an advanced certificate of this UF mechanism.展开更多
Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as th...Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as the coating solution concentration, sequence and times of coating, and heat-treatment on the properties of the composite membranes were studied. The results show that the hole diameter of the composite membrane decreases with the increase of the concentration of PVA, the hole diameter of composite membrane is different when the sequence of coating is different. When the higher concentration of PVA solution is used to coat the metallic membrane for the first time and the other smaller one for the second time, the hole diameter of the composite membrane is relatively small, compared with that of the composite membrane made by the smaller concentration of PVA solution for the first time and the other higher one for the second time. The holes of the composite membrane contract and the stability of the membrane is improved by heat treatment. When metal-PVA composite hydrophilic membranes are used to treat the oil/water emulsion with the concentration of 1 000 mg·L -1 , the retention is from 80% to 90%, and the permeate flux is from 15 L·m -2 ·h -1 to 40 L·m -2 ·h -1 at pressure of 0.2 to 0.3 MPa.展开更多
The past few decades have witnessed rapid gains in our demands of antifouling membranes such as water purification membranes and hemodialysis membranes.A variety of methodologies have been proposed for improving the a...The past few decades have witnessed rapid gains in our demands of antifouling membranes such as water purification membranes and hemodialysis membranes.A variety of methodologies have been proposed for improving the antifouling performance and the hemocompatibility of the membranes.In this study,a series of copolymers(PSF-PESSB)containing polysulfone(PSF)and poly(arylene ether sulfone)bearing pendant zwitterionic sulfobetaine groups(PESSB)were prepared via one-pot polycondensation.Subsequently,the ultrafiltration(UF)membranes were prepared from different zwitterion-containing copolymers.The prepared membranes showed high thermal stability and mechanical properties.Besides,it also displayed attractive antifouling performance and blood compatibility.Compared with the original PSF membrane,the amount of protein absorption on the modified membrane was reduced;the flux recovery ratio and the resistance to blood cells were significantly improved.The results of this work suggest that PSF-PESSB membranes are expected to be applied in blood purification.The introduction of zwitterion-containing polymers to membranes paves ways for developing advanced hemodialysis technologies for crucial process.展开更多
Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion va...Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.展开更多
Precluding the excessive lipoproteins from plasma rapidly and effectively is highly needed for biomedical detection and reducing plasma product scrap in blood donation stations.The current centrifugation procedure is ...Precluding the excessive lipoproteins from plasma rapidly and effectively is highly needed for biomedical detection and reducing plasma product scrap in blood donation stations.The current centrifugation procedure is high-cost and time-consuming.Herein,we fabricated an anionic microfiltration polyethersulfone(PES)membrane modified by interface swelling and implanting of acrylic acid(AA)for screening out large particle lipoprotein chylomicron(CM)and adsorbing cationic very low-density lipoproteins(VLDL).To improve the separation efficiency,a two-stage filtration through carboxylated polyethersulfone microfiltration membranes with the mean pore size of 0.45 and 0.22μm respectively were conducted.Attenuated total reflection Fourier transform infrared technique(ATR-FTIR),water contact angle(WCA),Zeta potential and scanning electron microscope(SEM)were employed to characterize the modified membrane.To test the effectiveness of this membrane,plasma flux and concentration variation of plasma components were examined to study the purification effectiveness.Furthermore,the hemocompatibility of modified membranes was tested to confirm its practicability on bloodcontacting materials.The carboxylated polyethersulfone microfiltration membrane shows its promising potential application to purify chylous plasma.展开更多
Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(U...Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(UF)is generally used for concentration of polymers.Furthermore,the introduction of multivalent metal ions into alginate may provide a promising method for the development of novel nanomaterials.In this study,membrane fouling mitigation by multivalent metal ions,both individually and in combination,and properties of recycled materials were investigated for UF recovery of sodium alginate(SA).The filtration resistance showed a significantly negative correlation with the concentration of metal ions,arranged in the order of Mg^2+<Ca^2+<Fe^3+<Al^3+(filtration resistance mitigation),and the moisture content of recycled filter cake showed a marked decrease.For Ca^2+,Mg^2+,Fe^3+,and Ca^2++Fe^3+,the filtration resistances were almost the same when the total charge concentration was less than 5 mmol·L^–1.However,when the total charge concentration was greater than 5 mmol·L^–1,membrane fouling mitigation increased significantly in the presence of Ca^2+or Fe^3+and remained constant for Mg^2+with the increase of total charge concentration.The filtration resistance mitigation was arranged in the order of Fe^3+>Fe^3++Ca^2+>Ca^2+>Mg^2+.Three mechanisms were proposed in the presence of Fe^3+,such as the decrease of SA concentration,change in p H,and production of hydroxide iron colloids from hydrolysis.The properties of recycled materials(filter cake)were investigated via optical microscope observation,dynamic light scattering,Fourier transform infrared,X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy.The results provide further insight into UF recoveries of alginate extracted from AGS.展开更多
In order to improve the purification properties of polysulfone (PSF) ultrafiltration membranes (UFM), nano-graphene oxide (nano-GO) was taken as modifier, and the physical blending process was adopted in our experimen...In order to improve the purification properties of polysulfone (PSF) ultrafiltration membranes (UFM), nano-graphene oxide (nano-GO) was taken as modifier, and the physical blending process was adopted in our experiment. The microstructure, surface morphology and functional groups of modified UFM have been characterized respectively by scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy, and the static contact angle between the membrane surface and the water droplet has also been detected to show the change of its hydrophilicity. Through experiments, it has been found that modified UFM has larger and more developed finger micro-pores, and there exist a large number of -OH groups on its surface, and also its hydrophilicity has been enhanced. The result of the experiments show that the modified UFM may keep rejection above 97% and its water flux can be reached at about 219.1 L/(m2·h) under pressure of 1 bar if 0.4 wt% of nano-GO was added. Additionally, the nano-GO can increase the flux recovery radio (FRR) of the membranes, and the maximum FRR was observed as 74.4% if 0.3 wt% of nano-GO was appended.展开更多
基金the National Natural Science Foundation of China (No.29976031), the Collaboration Project Foundation of Tianjin University and Nankal University, and the Key Project Foundation of Tianjin (No.0331810112).
文摘Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was considered the best one. Experimental results showed that the effects of compaction on the streaming potential measurement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.
基金Supported by the National Natural Science Foundation of China (No.29976031), the Collaboration Project Foundation of Tian-jin University and Nankai University, and the Key Project Foundation of Tianjin (No.0331810112).
文摘Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was con- sidered the best one. Experimental results showed that the effects of compaction on the streaming potential meas- urement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.
基金supported by the National Natural Science Foundation of China(51978133,52100026,U20A20322,52170151,51978132)the Fundamental Research Funds for the Central Universities of China(2412021QD022)+1 种基金the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ298)the Industrialization Cultivation Project of Jilin Provincial Department of Education(JJKH20221174CY)。
文摘The occurrence of ultrafiltration(UF)membrane fouling frequently hampers the sustainable advancement of UF technology.Reactive self-cleaning UF membranes can effectively alleviate the problem of membrane fouling.Nevertheless,the self-cleaning process may accelerate membrane aging.Addressing these concerns,we present an innovative design concept for composite self-healing materials based on self-cleaning UF membranes.To begin,TiO_(2)nanoparticles were incorporated into the polymer molecular structure via molecular design,resulting in the synthesis of TiO_(2)/carboxyl-polyether sulfone(PES)hybrid materials.Subsequently,the nonsolvent-induced phase inversion technique was employed to prepare a novel of UF membrane.Lastly,a polyvinyl alcohol(PVA)hydrogel coating was applied to the hybrid UF membrane surface to create PVA@TiO_(2)/carboxyl-PES self-healing reactive UF membranes.By establishing a covalent bond,the TiO_(2)nanoparticles were effectively and uniformly dispersed within the UF membrane,leading to exceptional self-cleaning properties.Furthermore,the water-absorbing and swelling properties of PVA hydrogel,along with its capacity to form hydrogen bonds with water molecules,resulted in UF membranes with improved hydrophilicity and active self-healing abilities.The results demonstrated that the water contact angle of PVA@5%TiO_(2)/carboxyl-PES UF membrane was 43.1°.Following a 1-h exposure to simulated solar exposure,the water flux recovery ratio increased from 48.16%to 81.03%.Moreover,even after undergoing five cycles of 12-h simulated sunlight exposure,the UF membranes exhibited a consistent retention rate of over 97%,thus fully demonstrating their exceptional self-cleaning,antifouling,and selfhealing capabilities.We anticipate that the self-healing reactive UF membrane system will serve as a pioneering and comprehensive solution for the self-cleaning antifouling challenges encountered in UF membranes while also effectively mitigating the aging effects of reactive UF membranes.
基金The National Natural Science Foundation of China (No. 50138020)
文摘Experimental and theoretical analysis were made on the natural humic acid removal and the membrane fouling of ultrafiltration (UF) with in-line coagulation. The results showed dissolved organic carbon (DOC) and UV254 removals by the UF with in-line coagulation at pH 7 were increased from 28% to 53% and 40% to 78% in comparison with direct UF treatment respectively. At the same time, the analysis of high performance liquid chromatography showed that UF with coagulation had significant improvement of removal of humic acid with molecular weights less than 6000 Da in particular. Compared to direct UF, the in-line coagulation UF also kept more constant permeate flux and very slight increase oftransmembrane pressure during a filtration circle. Two typical membrane fouling models were used by inducing two coefficients Kc and Kp corresponding to cake filtration model and pore narrowing model respectively. It was found that membrane fouling by pore-narrowing effect was effectively alleviated and that by cake-filtration was much decreased by in-line coagulation. Under the condition of coagulation prior to ultrafiltration at pH 7, the cake layer formed on the membrane surface became thicker, but the membrane filtration resistance was lower than that at pH 5 with the extension of operation time.
基金Supported by the National Natural Science Foundation of China(21776126)the National Basic Research Program of China(2015CB655301)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20150063)partially supported by the Open Fund of State Key Laboratory of Separation Membranes and Membrane Processes(M1-201702).
文摘Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein, we demonstrate the facile fabrication of antifouling polysulfone-block-poly(ethylene glycol)(PSF-b-PEG, SFEG)composite membranes. SFEG layer was coated onto macroporous supports and cavitated by immerging them in acetone/n-propanol following the mechanism of selective swelling induced pore generation. Thus-produced SFEG membranes possessed high permeance and excellent mechanical strength. Meanwhile, the structures and separation performances of the SFEG layers can be continuously tuned through simply changing swelling durations. More importantly, the hydrophilic PEG chains were spontaneously enriched onto the pore walls through swelling treatment, endowing intrinsic antifouling property to the SFEG membranes. Bovine serum albumin(BSA)/humic acid(HA) fouling tests proved the prominent fouling resistance of SFEG membranes, and the fouling resistance is expected to be long-standing because of the firm connection between PEG chains and PSF matrix by covalent bonding.
文摘Polyvinylidenefluoride (PVDF) hollow fiber ultrafiltration membrane is frequently employed in water treatment. However, the fouling of ultrafiltration membranes affects the economic effectiveness of such process significantly. The ultrasound generated by flat plate transducer (UFPT) was used to clean the polluted PVDF ultrafiltration membrane with 2 g·L^-1 of citric acid aqueous solution in our study. The effects of UFPT intensity on the membrane surface were studied. The new membrane was easy to be polluted by the saturated CaCl2 solution. A synergistic effect of UFPT and 2 g·L^-1 citric acid aqueous solution could remove the foul of the membrane, and its flux could be recovered about 81%. The flux recovery of old membrane polluted was increased to 73.2% after 7 h soaking in citric acid aqueous solution, but its flux recovery without soaking was only increased to 56.2%.
文摘The sensitivity of poly(arylsulfone)(PSf) for UV irradiation in different solvents(water and ethanol) was investigated. It is confirmed that acrylic acid(AA) and acrylamide(AAm) are grafted only onto the surface of the membrane instead of the interior by FTIR and scanning electron microscope(SEM). The membrane performance(Δ J/J 0 and contact angle θ ) after photografting was studied. In the range of conditions used, the grafting yield increases with irradiation time and monomer concentration growing. After photografting and N 3 dimethyl aminopropyl N' ethycarbodiimide hydrochloride(EDC) activation, PSf membrane was immobilized with hydrogen peroxide oxidoreductase, and showed a higher activity than the control membrane.
文摘A novel thermally induced graft polymerization technique was used to modify a polyvinylidene fluoride (PVDF) hollow fibre microfiltration membrane. An artificial neural network (ANN) was applied to optimize the prepared condition of the membrane. The optimized dosing of acrylic acid (AA), acrylamide (AM), N, N'- methylenebisacrylamide (NMBA) and potassium persulphate (KSP) designed by ANN was that AA was 40.63 ml/L; AM acted as 6.25 g/L; NMBA was 1.72 g/L and KSP was 1.5 g/L, respectively. The thermal stability of the PVDF modified hollow fibre membrane (PVDF-PAA) was investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) analysis. The polycrystallinity of the PVDF-PAA membrane was evaluated by X-ray diffraction (XRD) analysis. The complex formation of the modified membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The morphology of the PVDF-PAA membrane was studied by environmental scanning electron microscopy (ESEM). The surface compositions of the membrane were analyzed by X-ray photoelectron spectroscopy (XPS). The adsorption capacity of Cu^2+ ion on the PVDF-PAA hollow fibre membrane was also investigated.
基金Supported by the Natural Science Foundation of Shandong Province(Q2007B01)
文摘Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.
文摘A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of the casting solution through the holes of support layer. Felt-metal supported ferric sulfate modified PVA composite UF membranes were prepared by the innovative technology. The results show that the composite membranes are used to treat 1 000 mg/L oil/water emulsion at trans-membrane pressure from 0.25 to 0.45 MPa, the permeate flux is from 36 to 52 L/(m2·h), and the retention of chemical oxygen demand(COD) is over 92%. The composite membrane resistance increases with the increase of trans-naembrane pressure.
基金supported by the Project for Natural Science Research of Jiangsu Higher Education Institutions(20KJA530001)the National Natural Science Foundation of China(22078147,21808107)the Natural Science Foundation of Jiangsu Province(BK20180163)and the Research Project of National Synthetic Biotechnology Innovation Centre(TSBICIP-KJGG-002-16).
文摘Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.
基金Financial support from the National Natural Science Foundation of China (21706119)the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutions+1 种基金the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the partial support by the Open Fund of State Key Laboratory of Separation Membranes and Membrane Process (M1-201702)。
文摘Polysulfone(PSF) is extensively used for the production of ultrafiltration(UF) membranes thanks to its high strength,chemical stability,and good processibility.However,PSF is intrinsically hydrophobic,and hydrophilic modification is always required to PSF-based membranes if they are intended to be used in aqueous systems.Facile strategies to prepare hydrophilic PSF membranes are thus highly demanded.Herein we spray coat a PSF-based amphiphilic block polymer onto macroporous substrates followed by selective swelling to prepare flat-sheet PSF UF membranes.The polymer is a triblock polymer containing PSF as the majority middle block tethered with shorter block of polyethylene glycol(PEG) on both ends,that is,PEG-b-PSF-b-PEG.We use the technique of spray coa ting to homogeneously dispense diluted triblock polymer solutions on the top of macroporous supports,instantly resulting in uniform,defect-free polymer coating layers with the thickness down to ~1.2 μm.The bi-layered composite structures are then immerged in ethanol/acetone mixture to generate mesoscale pores in the coating layers following the mechanism of selective swelling-induced pore generation,thus producing composite membranes with the mesoporous triblock polymer coating as the selective layers.This facile strategy is free from additional hydrophilic modification and much smaller dosages of polymers are used compared to conventional casting methods.The pore sizes,porositie s,hydrophilicity,and consequently the separation properties of the membranes can be flexibly tuned by changing the swelling duration and the composition of the swelling bath.This strategy combining spray coating and selective swelling is upscalable for the production of highperformance PSF UF membranes.
基金The National Basic Research Program(973 Program)sponsored by the Ministry of Science and Technology under contract Nos 2014CB953700 and 2014CB953702the National Natural Science Foundation of China under contract Nos 40906040 and 41276063+3 种基金the Fundamental Research Funds for the Central Universities of Chinathe Natural Science Foundation of Fujian Province of China under contract No.2011J01277the Laboratory of Marine Ecosystem and Biogeochemistry of State Oceanic Administration of China under contract No.LMEB201103the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Education of Ministry of China
文摘The performance and integrity of a cassette cross-flow ultrafilter (Pellicon 2, Millipore) are examined with a suite of macromolecules of different molecular masses. The retention coefficient during the cross-flow ultrafiltration experiments increases with increasing molecular mass and reaches 90% with 10 kDa dextran in both milli-Q water and ultrafiltered seawater media. Based on a 90% retention coefficient, the molecular mass cut-off for the ultrafiltration membrane is defined at 10 kDa, which is ten times (1 kDa) that rated by the manufacturer. To further validate the accuracy of the laboratory calibration, the samples from the lower Zhujiang River and the Jiulong River Estuary are ultrafiltered with the cassette ultrafiltration membrane and the colloidal organic carbon abundances in these samples are quantified with the ultrafiltration per- meation model based on time series permeation subsamples. The colloidal organic carbon abundances are 5.8%-21.1% in the Jiulong River Estuary and 5.6%-11.0% in the lower Zhujiang River. These are consistent with the reported values for both estuaries as well as with the colloidal organic carbon abundances in ma- rine environments over the coastal and open oceans with 10 kDa cut-off membranes. Therefore, these field data support the laboratory calibration result and indicate the validity of the experimental and quantification procedure adopted. The discrepancy between the nominal molecular mass cut-off and the actual pore size of the ultrafiltration membrane should be of great concern for research in colloidal and nanoparticle biogeochemistry. Careflfl examination of the membrane integrity should be taken during ultrafiltration ex- oeriments in order to avoid misleading molecular mass cut-off information.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50978068)International Cooperation Program (Grant No.2010DFA92460)+1 种基金National High Technology Research and Development Program of China (863 Program,Grant No.2008AA06Z304)Tianjin Key Laboratory of Aquatic Science and Technology
文摘In the present study,nano-sized TiO2 /Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide ( APAM) separation. The results showed that,compared with PVDF membrane (OM) ,the contact angle of MM decreases from 83. 64° to 67. 42°,which indicates the increase of the hydrophilicity of MM. The relative flux (RF) decline curve of this ultrafiltration of APAM in water with time shows an obvious two stage properties. The cake filtration models were used to predict the performance of different time over the complete range of filtration times. All the four cake models could simulate this UF process to a certain extent,and the suitability of the two kinds of membranes was: cake filtration > intermediate pore blocking > standard pore blocking > complete pore blocking models. However,they became more and more unsuited to this process with time extending. Surface and cross-sectional morphology of membrane was investigated by SEM to make an advanced certificate of this UF mechanism.
文摘Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as the coating solution concentration, sequence and times of coating, and heat-treatment on the properties of the composite membranes were studied. The results show that the hole diameter of the composite membrane decreases with the increase of the concentration of PVA, the hole diameter of composite membrane is different when the sequence of coating is different. When the higher concentration of PVA solution is used to coat the metallic membrane for the first time and the other smaller one for the second time, the hole diameter of the composite membrane is relatively small, compared with that of the composite membrane made by the smaller concentration of PVA solution for the first time and the other higher one for the second time. The holes of the composite membrane contract and the stability of the membrane is improved by heat treatment. When metal-PVA composite hydrophilic membranes are used to treat the oil/water emulsion with the concentration of 1 000 mg·L -1 , the retention is from 80% to 90%, and the permeate flux is from 15 L·m -2 ·h -1 to 40 L·m -2 ·h -1 at pressure of 0.2 to 0.3 MPa.
基金financially supported by the National Natural Science Foundation of China(52003266,21961160739)the Development of Scientific and Technological Project of the Jilin Province(YDZJ202101ZYTS162,20200801051GH)Chinese Academy of Sciences-Wego Group High-tech Research&Development。
文摘The past few decades have witnessed rapid gains in our demands of antifouling membranes such as water purification membranes and hemodialysis membranes.A variety of methodologies have been proposed for improving the antifouling performance and the hemocompatibility of the membranes.In this study,a series of copolymers(PSF-PESSB)containing polysulfone(PSF)and poly(arylene ether sulfone)bearing pendant zwitterionic sulfobetaine groups(PESSB)were prepared via one-pot polycondensation.Subsequently,the ultrafiltration(UF)membranes were prepared from different zwitterion-containing copolymers.The prepared membranes showed high thermal stability and mechanical properties.Besides,it also displayed attractive antifouling performance and blood compatibility.Compared with the original PSF membrane,the amount of protein absorption on the modified membrane was reduced;the flux recovery ratio and the resistance to blood cells were significantly improved.The results of this work suggest that PSF-PESSB membranes are expected to be applied in blood purification.The introduction of zwitterion-containing polymers to membranes paves ways for developing advanced hemodialysis technologies for crucial process.
基金Project(20776161)supported by the National Natural Science Foundation of China
文摘Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.
基金financially supported by Natural Science Foundation of Ningbo City(2018A610026)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR20E030002)+1 种基金Ten thousand plan-high level talents special support plan of Zhejiang province,China(ZJWR0108020)Youth Innovation Promotion Association of Chinese Academy of Science(2014258)。
文摘Precluding the excessive lipoproteins from plasma rapidly and effectively is highly needed for biomedical detection and reducing plasma product scrap in blood donation stations.The current centrifugation procedure is high-cost and time-consuming.Herein,we fabricated an anionic microfiltration polyethersulfone(PES)membrane modified by interface swelling and implanting of acrylic acid(AA)for screening out large particle lipoprotein chylomicron(CM)and adsorbing cationic very low-density lipoproteins(VLDL).To improve the separation efficiency,a two-stage filtration through carboxylated polyethersulfone microfiltration membranes with the mean pore size of 0.45 and 0.22μm respectively were conducted.Attenuated total reflection Fourier transform infrared technique(ATR-FTIR),water contact angle(WCA),Zeta potential and scanning electron microscope(SEM)were employed to characterize the modified membrane.To test the effectiveness of this membrane,plasma flux and concentration variation of plasma components were examined to study the purification effectiveness.Furthermore,the hemocompatibility of modified membranes was tested to confirm its practicability on bloodcontacting materials.The carboxylated polyethersulfone microfiltration membrane shows its promising potential application to purify chylous plasma.
基金partially supported by the Beijing Outstanding Talents TrainingScience and Technology Programs of the Beijing Municipal Education Commission(SQKM201710016001)+1 种基金the BUCEA Post Graduate Innovation Projectthe Beijing Advanced Innovation Center for Future Urban Design。
文摘Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(UF)is generally used for concentration of polymers.Furthermore,the introduction of multivalent metal ions into alginate may provide a promising method for the development of novel nanomaterials.In this study,membrane fouling mitigation by multivalent metal ions,both individually and in combination,and properties of recycled materials were investigated for UF recovery of sodium alginate(SA).The filtration resistance showed a significantly negative correlation with the concentration of metal ions,arranged in the order of Mg^2+<Ca^2+<Fe^3+<Al^3+(filtration resistance mitigation),and the moisture content of recycled filter cake showed a marked decrease.For Ca^2+,Mg^2+,Fe^3+,and Ca^2++Fe^3+,the filtration resistances were almost the same when the total charge concentration was less than 5 mmol·L^–1.However,when the total charge concentration was greater than 5 mmol·L^–1,membrane fouling mitigation increased significantly in the presence of Ca^2+or Fe^3+and remained constant for Mg^2+with the increase of total charge concentration.The filtration resistance mitigation was arranged in the order of Fe^3+>Fe^3++Ca^2+>Ca^2+>Mg^2+.Three mechanisms were proposed in the presence of Fe^3+,such as the decrease of SA concentration,change in p H,and production of hydroxide iron colloids from hydrolysis.The properties of recycled materials(filter cake)were investigated via optical microscope observation,dynamic light scattering,Fourier transform infrared,X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy.The results provide further insight into UF recoveries of alginate extracted from AGS.
文摘In order to improve the purification properties of polysulfone (PSF) ultrafiltration membranes (UFM), nano-graphene oxide (nano-GO) was taken as modifier, and the physical blending process was adopted in our experiment. The microstructure, surface morphology and functional groups of modified UFM have been characterized respectively by scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy, and the static contact angle between the membrane surface and the water droplet has also been detected to show the change of its hydrophilicity. Through experiments, it has been found that modified UFM has larger and more developed finger micro-pores, and there exist a large number of -OH groups on its surface, and also its hydrophilicity has been enhanced. The result of the experiments show that the modified UFM may keep rejection above 97% and its water flux can be reached at about 219.1 L/(m2·h) under pressure of 1 bar if 0.4 wt% of nano-GO was added. Additionally, the nano-GO can increase the flux recovery radio (FRR) of the membranes, and the maximum FRR was observed as 74.4% if 0.3 wt% of nano-GO was appended.