Air pollution has been linked to many health issues,including skin conditions,especially in children.Among all the atmospheric pollutants,ultrafine particles have been deemed very dangerous since they can readily pene...Air pollution has been linked to many health issues,including skin conditions,especially in children.Among all the atmospheric pollutants,ultrafine particles have been deemed very dangerous since they can readily penetrate the lungs and skin,and be absorbed into the bloodstream.Here,we employed a human embryonic stem cell(h ESC)-based differentiation system towards keratinocytes,to test the effects of ultrafine carbon particles,which mimic ambient ultrafine particles,at environment related concentrations.We found that10 ng/mL to 10μg/mL ultrafine carbon particles down-regulated the expression of the pluripotency marker SOX2 in h ESCs.Moreover,1μg/mL to 10μg/mL carbon particle treatments disrupted the keratinocyte differentiation,and up-regulated inflammationand psoriasis-related genes,such as IL-1β,IL-6,CXCL1,CXCL2,CXCL3,CCL20,CXCL8,and S100 A7 and S100 A9,respectively.Overall,our results provide a new insight into the potential developmental toxicity of atmospheric ultrafine particles.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21876197,21577166,21707160)the Chinese Academy of Sciences(Nos.XDB14040301,QYZDJSSW-DQC017)the K.C.Wong Education Foundation
文摘Air pollution has been linked to many health issues,including skin conditions,especially in children.Among all the atmospheric pollutants,ultrafine particles have been deemed very dangerous since they can readily penetrate the lungs and skin,and be absorbed into the bloodstream.Here,we employed a human embryonic stem cell(h ESC)-based differentiation system towards keratinocytes,to test the effects of ultrafine carbon particles,which mimic ambient ultrafine particles,at environment related concentrations.We found that10 ng/mL to 10μg/mL ultrafine carbon particles down-regulated the expression of the pluripotency marker SOX2 in h ESCs.Moreover,1μg/mL to 10μg/mL carbon particle treatments disrupted the keratinocyte differentiation,and up-regulated inflammationand psoriasis-related genes,such as IL-1β,IL-6,CXCL1,CXCL2,CXCL3,CCL20,CXCL8,and S100 A7 and S100 A9,respectively.Overall,our results provide a new insight into the potential developmental toxicity of atmospheric ultrafine particles.