期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Microstructures and Toughness of Weld Metal of Ultrafine Grained Ferritic Steel by Laser Welding 被引量:11
1
作者 XudongZHANG WuzhuCHEN +3 位作者 ChengWANG LinZHAO YunPENG ZhilingTIAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期755-759,共5页
3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is l... 3 mm thick 400 MPa grade ultrafine grained ferritic steel plates were bead-on-plate welded by CO2 laser with heat input of 120-480 J/mm. The microstructures of the weld metal mainly consist of bainite, which form is lower bainite plates or polygonal ferrite containing quantities of dispersed cementite particles, mixed with a few of low carbon martensite laths or ferrite, depending on the heat input. The hardness and the tensile strength of the weld metal are higher than those of the base metal, and monotonously increase as the heat input decreases. No softened zone exists in heat affected zone (HAZ). Compared with the base metal, although the grains of laser weld are much larger, the toughness of the weld metal is higher within a large range of heat input. Furthermore, as the heat input increases, the toughness of the weld metal rises to a maximum value, at which point the percentage of lower bainite is the highest, and then drops. 展开更多
关键词 Laser welding ultrafine grained steel MICROSTRUCTURE TOUGHNESS
下载PDF
Ultrafine Grain Tungsten Heavy Alloys with Excellent Performance Prepared by Spark Plasma Sintering 被引量:2
2
作者 ZHANG Jingang WANG Weimin +4 位作者 JI Wei HE Qianglong WANG Aiyang TAN Lin YANG Kai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期393-398,共6页
Ultrafine grain tungsten heavy alloys (WHAs) were successfully produced from the nano-crystalline powders using spark plasma sintering.The present study mainly discussed the effects of sintering temperature on the den... Ultrafine grain tungsten heavy alloys (WHAs) were successfully produced from the nano-crystalline powders using spark plasma sintering.The present study mainly discussed the effects of sintering temperature on the density,microstructure and mechanical properties of the alloys.The relative density of 98.12% was obtained at 1 050 ℃,and the tungsten grain size is about 871 nm.At 1 000 ℃-1 200 ℃,the mechanical properties of the alloys tend to first rise and then goes down.After SPS,the alloy exhibits improved hardness (84.3 HRA at 1 050 ℃) and bending strength (987.16 MPa at 1 100 ℃),due to the ultrafine-grained microstructure.The fracture mode after bending tests is mainly characterized as intergranular or intragranular fracture of W grains,interfacial debonding of W grains-binding phase and ductile tearing of binding phase.The EDS analysis reveals a certain proportion of solid solution between W and Ni-Fe binding phase.The good mechanical properties of the alloys can be attributed to grain refinement and solid solution strengthening. 展开更多
关键词 tungsten heavy alloys ultrafine grain nano-crystalline powders solid solution strengthening spark plasma sintering
下载PDF
Effect of grain boundary sliding on the toughness of ultrafine grain structure steel: A molecular dynamics simulation study 被引量:1
3
作者 谢红献 刘波 +1 位作者 殷福星 于涛 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期54-61,共8页
Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001 }/{ ... Molecular dynamics simulations are carried out to investigate the mechanisms of low-temperature impact toughness of the ultrafine grain structure steel. The simulation results suggest that the sliding of the {001 }/{ 110} type and { 110}/{ 111 } type grain boundary can improve the impact toughness. Then, the mechanism of grain boundary sliding is studied and it is found that the motion of dislocations along the grain boundary is the underlying cause of the grain boundary sliding. Finally, the sliding of the grain boundary is analyzed from the standpoint of the energy. We conclude that the measures which can increase the quantity of the {001}/{110} type and {110}/{ 111} type grain boundary and elongate the free gliding distance of dislocations along these grain boundaries will improve the low-temperature impact toughness of the ultrafine grain structure steel. 展开更多
关键词 molecular dynamics simulations grain boundary CRACK ultrafine grain structure steel
下载PDF
Influence of High-Speed Milling Process on Mechanical and Microstructural Properties of Ultrafine Grained Profiles Produced by Linear Flow Splitting 被引量:1
4
作者 Abele Eberhard Müller Clemens +3 位作者 Turan Emrah Niehuesbernd Joern Bruder Enrico Falk Florian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第4期349-356,共8页
The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting spee... The effects of milling parameters on the surface quality,microstructures and mechanical properties of machined parts with ultrafine grained(UFG)gradient microstructures are investigated.The effects of the cutting speed,feed per tooth,cutting tool geometry and cooling strategy are demonstrated.It has been found that the surface quality of machined grooves can be improved by increasing the cutting speed.However,cryogenic cooling with CO_2 exhibits no significant improvement of surface quality.Microstructure and hardness investigations revealed similar microstructure and hardness variations near the machined groove walls for both utilized tool geometries.Therefore,cryogenic cooling can decrease more far-ranging hardness reductions due to high process temperatures,especially in the UFG regions of the machined parts,whilst it cannot prevent the drop in hardness directly at the groove walls. 展开更多
关键词 high-speed milling ultrafine grained microstructure linear flow splitting HARDNESS
下载PDF
Ultrafine Grained Duplex Structure Developed by ART-annealing in Cold Rolled Medium-Mn Steels 被引量:6
5
作者 Jie SHI Jun HU +3 位作者 Chang WANG Cun-yu WANG Han DONG Wen-quan CAO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2014年第2期208-214,共7页
The microstructural evolutions of the cold rolled Fe-0.1C-5Mn steel during intercritical annealing were ex- amined using combined advanced techniques. It was demonstrated that intercritical annealing results in an ult... The microstructural evolutions of the cold rolled Fe-0.1C-5Mn steel during intercritical annealing were ex- amined using combined advanced techniques. It was demonstrated that intercritical annealing results in an ultrafine granular ferrite and austenite duplex structure in cold rolled 0.1C-5Mn steel. The strong partitioning of manganese and carbon elements from ferrite to austenite was found during intercritical annealing by scanning transmission elec- tron microscopy (STEM) and X-ray diffraction (XRD). Strong effects of boundary characters on the austenite for- mation were indicated by austenite fast nucleation and growth in the high angle boundaries but sluggish nucleation and growth in the low angle boundaries. The ultrafine grained duplex structure in 0.1C-5Mn was resulted from the the sluggish Mn-diffusion and the extra high Gibbs free energy of ferrite phase. Based on the analysis of the micro- structure evolution, it was pointed out that the intercritical annealing of the medium Mn steels could be applied to fabricate an ultrafine duplex grained microstructure, which would be a promising approach to develop the 3rd genera- tion austomobile steels with excellent combination of strength and ductility. 展开更多
关键词 intercritical annealing partitioning SEGREGATION ultrafine grained duplex structure boundary character Gibbs free energy
原文传递
Effects of SiC Nanoparticle Content on the Microstructure and Tensile Mechanical Properties of Ultrafine Grained AA6063-SiC_(np) Nanocomposites Fabricated by Powder Metallurgy 被引量:4
6
作者 X.Yao Z.Zhang +6 位作者 Y.F.Zheng C.Kong M.Z.Quadir J.M.Liang Y.H.Chen P.Munroe D.L.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第9期1023-1030,共8页
Ultrafine grained AA6063-SiCnpnanocomposites with 1, 5 and 10 vol.% SiCnphave been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules ma... Ultrafine grained AA6063-SiCnpnanocomposites with 1, 5 and 10 vol.% SiCnphave been fabricated by a novel powder metallurgy process. This process combines high energy ball milling of a mixture of 6063 alloy granules made from machining chips and Si C nanoparticles and thermomechanical powder consolidation by spark plasma sintering and hot extrusion. The microstructure and tensile mechanical properties of the samples were investigated in detail. Increasing the Si C nanoparticle content from 1 to 10 vol.%,the yield strength and ultimate tensile strength increased from 296 and 343 MPa to 545 and 603 MPa respectively, and the elongation to fracture decreased from 10.0%, to 2.3%. As expected, a higher Si C nanoparticle content generates a stronger inhibiting effect to grain growth during the thermomechanical powder consolidation process. Analysis of the contributions of various strengthening mechanisms shows that a higher Si C nanoparticle content leads to a higher contribution from nanoparticle strengthening, but grain boundary strengthening still makes the largest contribution to the strength of the nanocomposite.When the Si C nanoparticle content increased to 10 vol.%, the failure of the nanocomposite was initiated at weakly-bonded interparticle boundaries(IPBs), indicating that with a high flow stress during tensile deformation, the failure of the material is more sensitive to the presence of weakly-bonded IPBs. 展开更多
关键词 Metal matrix nanocomposite ultrafine grained material Powder metallurgy Tensile mechanical properties
原文传递
A superior strength-ductility synergy of Al_(0.1)CrFeCoNi high-entropy alloy with fully recrystallized ultrafine grains and annealing twins 被引量:2
7
作者 Jiahao Li Kejie Lu +4 位作者 Xiaojun Zhao Xinkai Ma Fuguo Li Hongbo Pan Jieming Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第36期185-194,共10页
Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abund... Grain refinement usually makes the materials stronger,while ductility has a dramatic loss.Here,a superior tensile strength–ductility synergy in a fully recrystallized ultrafine-grained(UFG)Al_(0.1)CrFeCoNi with abundant annealing twins was achieved by cold rolling at room temperature and short-time annealing.The microstructure characterization using electron backscattered scattering diffraction demonstrates that abundant geometrically necessary dislocations(GNDs)gather around the grain boundaries and twin boundaries after tensile deformation.Although coarse-grained(CG)samples undergo a larger plastic deformation than UFG samples,the GND density decreases with grain size ranging from UFG to CG.Transmission electron microscopy results reveal that the annealing twin boundary,which effectively hinders the dislocation slip and stores dislocation in grain interior,and the activation of multiple deformation twins are responsible for the superior strength–ductility synergy and work hardening ability.In addition,the yield strength of fully recrystallized Al_(0.1)CrFeCoNi follows a Hall–Petch relationship(σ_y=24+676d^(–1/2)),where d takes into account both grain boundaries and annealing twin boundaries.The strengthening effects of grain boundaries and annealing twin boundaries were also evaluated separately. 展开更多
关键词 High-entropy alloy ultrafine grains Annealing twins STRENGTH DUCTILITY
原文传递
Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF 被引量:2
8
作者 Peng-Cheng Zhao Guang-Jian Yuan +4 位作者 Run-Zi Wang Bo Guan Yun-Fei Jia Xian-Cheng Zhang Shan-Tung Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期196-207,共12页
The microstructural evolution and mechanical properties of ultrafine-grained(UFG)CP-Ti after an innovative large-volume equal channel angular pressing(L-ECAP)and multi-directional forging(MDF)were systematically exami... The microstructural evolution and mechanical properties of ultrafine-grained(UFG)CP-Ti after an innovative large-volume equal channel angular pressing(L-ECAP)and multi-directional forging(MDF)were systematically examined using monotonic tensile tests combined with transmission electron microscope(TEM)and electron backscatter diffraction(EBSD)techniques.Substantially refined and homogeneous microstructures were achieved after L-ECAP(8-pass and 12-pass)and MDF(2-cycle and 3-cycle),respectively,where the grain size distribution conformed to lognormal distribution.The grain refinement of450℃L-ECAP is dominated by dynamic recrystallization(DRX)and dynamic recovery(DRV),while that of MDF is dominated by DRX.The iron impurities promote recrystallization by pinning-induced dislocation accumulation so that DRX is prone to occur at iron segregation regions during L-ECAP.The monotonic tensile results show that the strain hardening rate of CP-Ti increases with the decrease of grain size,while the continuous strain hardening ability decreases.The relationship between the average grain size and yield strength is in accordance with Hall-Petch relationship.Meanwhile,the individual strengthening mechanisms were quantitatively examined by the modified model.The results indicate that the strengthening contribution of dislocation accumulation to yield strength is greater than that of grain refinement. 展开更多
关键词 Equal channel angular pressing Multi-directional forging ultrafine grain RECRYSTALLIZATION Strain hardening Hall-Petch relation
原文传递
Thermally stable ultrafine grained copper induced by CrB/CrB_(2) microparticles with surface nanofeatures via regular casting 被引量:2
9
作者 Gongcheng Yao Chezheng Cao +3 位作者 Shuaihang Pan Jie Yuan Igor De Rosa Xiaochun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第23期55-62,共8页
Ultrafine-grained(UFG)/nanocrystalline materials possess novel properties. Refining as-solidified grains of metals to the ultrafine and even nanometer scale by nanoparticles via slow cooling has been recently discover... Ultrafine-grained(UFG)/nanocrystalline materials possess novel properties. Refining as-solidified grains of metals to the ultrafine and even nanometer scale by nanoparticles via slow cooling has been recently discovered. Here, we report that microparticles(CrB and CrB_(2)) with surface nanofeatures can also enable ultrafine/nano grains via slow cooling. CrB/CrB_(2) microparticles, formed by coalescence of nanoparticles in Cu matrix, display surface nanofeatures, which induce substantial grain refinement and stabilization down to the ultrafine/nano scale. The UFG Cu/Cr B and Cu/CrB_(2) samples exhibit exceptional thermal stability, comparable to UFG Cu induced by nanoparticles, without coarsening after annealing at 600°C for 1 h. The microhardness, strengths, and Young's moduli of the Cu/Cr B and Cu/CrB_(2) samples are significantly enhanced over pure Cu. This discovery has great potential to advance the mass production UFG/nanocrystalline for widespread applications. 展开更多
关键词 COPPER Microparticles with nanofeatures CASTING ultrafine grains Thermal stability
原文传递
Achieving Large-area Bulk Ultrafine Grained Cu via Submerged Multiple-pass Friction Stir Processing 被引量:1
10
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第12期1111-1115,共5页
Large-area bulk ultrafine grained (UFG) pure Cu was successfully prepared by multiple-pass overlapping friction stir processing (FSP) under additional rapid cooling. Overlapping FSP did not exert a significant eff... Large-area bulk ultrafine grained (UFG) pure Cu was successfully prepared by multiple-pass overlapping friction stir processing (FSP) under additional rapid cooling. Overlapping FSP did not exert a significant effect on the microstructure and mechanical properties of the FSP UFG Cu. Similar average grain size was achieved in the transitional zone (TZ) of the multiple-pass FSP sample compared to that in the nugget zone of the single-pass FSP sample, and the TZ exhibited a strong {111}(112) type A fiber shear texture, Very weak softening occurred in the TZ of the multiple-pass FSP UFG Cu, resulting in a relatively uniform hardness distribution throughout the whole processed zone. A high yield strength of - 310 MPa and a uniform elongation of - 13% were achieved in the bulk FSP UFG Cu. This study provides an effective strategy to prepare large-area bulk IUFG materials. 展开更多
关键词 Friction stir processing Multiple-pass ultrafine grains Microstructure Mechanical properties
原文传递
Grain size altering yielding mechanisms in ultrafine grained high-Mn austenitic steel:Advanced TEM investigations 被引量:1
11
作者 Chang-Yu Hung Yu Bai +1 位作者 Nobuhiro Tsuji Mitsuhiro Murayama 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第27期192-203,共12页
The underlying mechanism of discontinuous yielding behavior in an ultrafine-grained(UFG)Fe-31 Mn-3 Al-3 Si(wt.%)austenitic TWIP steel was investigated by the use of advanced TEM technique with taking the plastic defor... The underlying mechanism of discontinuous yielding behavior in an ultrafine-grained(UFG)Fe-31 Mn-3 Al-3 Si(wt.%)austenitic TWIP steel was investigated by the use of advanced TEM technique with taking the plastic deformation mechanisms and their correlation with grains size near the macroscopic yield point into account.Typical yield drop mechanisms such as the dislocation locking by the Cottrell atmosphere due to the presence of interstitial impurities cannot explain the origin of this phenomenon in the UFG high-Mn austenitic TWIP steel.Here,we experimentally revealed that the plastic deformation mechanisms in the early stage of deformation,around the macroscopic yield point,show an obvious association with grain size.More specifically,the main mechanism shifts from the conventional slip in grain interior to twinning nucleated from grain boundaries with decreasing the grain size down to less than 1μm.Our observation indicates that the grain size dependent deformation mechanisms transition is also deeply associated with the discontinuous yielding behavior as it could govern the changes in the grain interior dislocation density of mobile dislocations around the macroscopic yield point. 展开更多
关键词 ultrafine grains TWIP steel Yield-drop phenomenon Deformation twin nucleation Structural defects Transmission electron microscopy
原文传递
DAMPING BEHAVIOR OF ULTRAFINE-GRAINED PURE ALUMINUM L2 AND THE DAMPING MECHANISM 被引量:1
12
作者 Z.M. Zhang C.J. Xu +1 位作者 J.C. Wang H.Z. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期223-227,共5页
Ultrafine-grained pure aluminum L2 with a mean grain size of 1.01μm was produced by equal channel angular pressing (ECAP) and annealing at 150℃ for 2h. Damping behavior of the alloy was measured using a dynamic me... Ultrafine-grained pure aluminum L2 with a mean grain size of 1.01μm was produced by equal channel angular pressing (ECAP) and annealing at 150℃ for 2h. Damping behavior of the alloy was measured using a dynamic mechanical thermal analyzer. The alloy had an excellent damping capacity Q^-1 with the ambient value being 9.8×10^-3 at 1.0Hz when the strain amplitude was 2.0×10^-5. The damping behavior of the alloy showed a non-linear damping variation tendency, that is, with an increase in temperature and a decrease of frequency, the damping capacity of the alloy increased. The damping capacity increased with the strain amplitude when the strain amplitude was less than 4.6×10^-5. When the strain amplitude was higher than 4.6×10^-5, the damping capacity became a constant and independent of strain amplitude. The high damping capacity was attributed to dislocation unpinning and a drag of dislocation on pinning points. 展开更多
关键词 ECAP ultrafine grain damping capacity aluminum alloy
下载PDF
Formation of Nano/Ultrafine Grains in AISI 321 Stainless Steel Using Advanced Thermo-Mechanical Process 被引量:1
13
作者 Mohsen Golzar Shahri S.Rahman Hosseini Mehdi Salehi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第4期499-504,共6页
Production of nano/ultrafine grains through deformation-induced martensite formation and its reversion to austenite in an AISI 321 stainless steel was studied. The repetitive cold rolling and subsequent annealing were... Production of nano/ultrafine grains through deformation-induced martensite formation and its reversion to austenite in an AISI 321 stainless steel was studied. The repetitive cold rolling and subsequent annealing were conducted to obtain nanocrystalline structure. Heavy cold rolling (90% reduction) at +20 and -20 ℃ was carded out to induce the formation of α′-martensite from metastable austenitic material. The process was followed by annealing treatment at 700-900 ℃ for 0.5-30 min. Effects of process parameters, i.e., "reduction percentage," "rolling temperature," "annealing temperature" and "annealing time", on the microstructural development were considered. Microstructural evolutions were conducted using feritscope, X-ray diffractometer and scanning electron microscope. Hardness of the specimens was measured by Vickers method. Results revealed that the higher thickness reduction and lower rolling temperature provided more martensite volume fraction and further hardness. X-ray diffraction patterns and feritoscopic results indicated that saturated strain (εs) was reduced from 2.3 to 0.9 when temperature declined from +20 to -20 ℃. The smallest grain size (about 70 nm) was achieved in the condition of cold rolling at -20℃followed by annealing at 750 ℃for 5 min. 展开更多
关键词 Austenitic stainless steel Deformation-induced martensite Nano/ultrafine grain structure Thermo-mechanical treatment
原文传递
Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding 被引量:4
14
作者 C.Y.Liu B.Qu +4 位作者 P.Xue Z.Y.Ma K.Luo M.Z.Ma R.P.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期112-118,共7页
In this study, the ultrafine grained (UFG) 6061 Al alloys fabricated by cold rolling were friction stir welded (FSW) with different rotation rates under both air cooling and rapid cooling in water. Low-heat-input ... In this study, the ultrafine grained (UFG) 6061 Al alloys fabricated by cold rolling were friction stir welded (FSW) with different rotation rates under both air cooling and rapid cooling in water. Low-heat-input parameters of 400 rpm rotation rate in water (400-Water) could effectively inhibit the coarsening of recrystallized grains, reduce the precipitation rate, and retain more dislocations of the UFG 6061 Al parent metal. 400-Water joint showed high lowest-hardness value, narrow low-hardness zone, and high tensile strength, attributing to the effect of dislocation, grain boundary, solid-solution, and precipitation hardening. This work provides an effective strategy to fabricate large-sized bulk UFG AI alloy by cold rolling with large deformation and low-heat-input FSW. 展开更多
关键词 Aluminum alloys ultrafine grained materia Friction stir welding Mechanical properties
原文传递
TEMPERATURE SENSITIVITY AND PREDICTION OF THE MECHANICAL BEHAVIORS OF ULTRAFINE GRAINED ALUMINUM UNDER UNIAXIAL COMPRESSION 被引量:2
15
作者 Quanwei Zhan Tao Suo +2 位作者 Cunxian Wang Kui Xie Zhongbin Tang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第4期373-382,共10页
In the present work, we explore the strain hardening behaviors as well as the effect of temperature on the plastic deformation of ultrafine grained aluminum. The temperature sensitivity is determined and compared with... In the present work, we explore the strain hardening behaviors as well as the effect of temperature on the plastic deformation of ultrafine grained aluminum. The temperature sensitivity is determined and compared with that of coarse grained material. The results indicate that the flow stress of ultrafine grained aluminum displays enhanced sensitivity to temperature. The reduction in activation volume is suggested to be the major reason for the enhanced temperature sensitivity as grain size is refined into the sub-micrometer regime. Finally, a phenomenological constitutive model is proposed to describe the post-yield response of ultrafine grained aluminum. 展开更多
关键词 ultrafine grained aluminum compressive behavior temperature sensitivity strain hardening behavior constitutive relation
原文传递
Texture Evolution and Ultrafine Grain Formation in Cross-Cryo-Rolled Zircaloy-2
16
作者 Sunkulp Goel R.Jayaganthan +3 位作者 I.V.Singh D.Srivastava G.K.Dey N.Saibaba 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第7期837-846,共10页
The texture and mechanical properties of cross-rolled zircaloy-2 at 77 and 300 K were investigated.Crossrolling at 77 K was performed to impart different thickness reductions of 25% and 50%,while at 300 K with 25%,50%... The texture and mechanical properties of cross-rolled zircaloy-2 at 77 and 300 K were investigated.Crossrolling at 77 K was performed to impart different thickness reductions of 25% and 50%,while at 300 K with 25%,50%,75% and 85% reductions to the sample.EBSD analysis of deformed sample showed that near-basal orientation is not deformed completely after 50% rolling reduction.The activation of prismatic silp,{1122} contraction twin and {1012} extension twin were evident from the deformed microstructure at 77 K.The propensity for activation of basal slip〈a〉 at77 K was also observed.The deformation of the sample at 300 K occurs by prismatic,basal 〈a〉 and pyramidal 〈c+a〉slips,which were predicted by pole figures.After annealing,the tensile strengths(735 and 710 MPa) are almost the same for 50% cryo-cross-rolled and room-temperature cross-rolled zircaloy-2 with almost 2.7% difference in their ductility.KAM analysis of the deformed samples was made to estimate the stored strain energy and dislocation density.Annealing of deformed sample at 673 K for 30 min results in recrystallization,which leads to the formation of ultrafine grains. 展开更多
关键词 Cross-rolling EBSD TEM ultrafine grains Texture
原文传递
Structural Ultrafine Grained Steels Obtained by Advanced Controlled Rolling
17
作者 R González J O García +3 位作者 M A Barbés M J Quintana L F Verdeja J I Verdeja 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第1期62-70,共9页
Steels with ultrafine grains (lower than 5 μm), which usually known as ultrafine ferrite or ultrafine grained materials, are presently the object of intense research, because of the improvement in resistance and fr... Steels with ultrafine grains (lower than 5 μm), which usually known as ultrafine ferrite or ultrafine grained materials, are presently the object of intense research, because of the improvement in resistance and fracture toughness they may reach compared to conventional steels (with grain sizes above this value). It is shown that the forenamed steels designated in the Euronorm EN 10149-2, which are manufactured by advanced techniques of controlled rolling and mainly used in automotive industry, have an ultrafine grain size in the range of 2.5 to 3.5 μm, and with elastic yield stresses higher than 400 MPa. Based on the Morrison-Miller criterion, it is shown that values of the strain-hardening coefficient lower than 0.08 would make the industrial application of these steels unfeasible. 展开更多
关键词 ultrafine grained steel mechanical property MANUFACTURABILITY STRAIN-HARDENING
原文传递
Texture evolution and mechanical anisotropy of an ultrafine/nano-grained pure copper tube processed via hydrostatic tube cyclic expansion extrusion
18
作者 Seyed Moien Faregh Ghader Faraji +1 位作者 Mahmoud Mosavi Mashhadi Mohammad Eftekhari 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第12期2241-2251,共11页
Texture evolution and mechanical anisotropic behavior of an ultrafine-grained(UFG)pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion(HTCEE)was investigated.For the ... Texture evolution and mechanical anisotropic behavior of an ultrafine-grained(UFG)pure copper tube processed by recently introduced method of hydrostatic tube cyclic expansion extrusion(HTCEE)was investigated.For the UFG tube,different deformation behavior and a significant anisotropy in tensile properties were recorded along the longitudinal and peripheral directions.The HTCEE process increased the yield strength and the ultimate strength in the axial direction by 3.6 and 1.67 times,respectively.Also,this process increased the yield strength and the ultimate strength in the peripheral direction by 1.15 and 1.12 times,respectively.The ratio of ultimate tensile strength in the peripheral direction to that in the axial direction,as a criterion for mechanical anisotropy,are 1.7 and 1.16 for the as-annealed coarse-grained and the HTCEE processed UFG tube,respectively.The results are indicative of a reducing effect of the HTCEE process on the mechanical anisotropy.Besides,after HTCEE process,a low loss of ductility was observed in both directions,which is another advantage of HTCEE process.Hardness measurements revealed a slight increment of hardness values in the peripheral direction,which is in agreement with the trend of tensile tests.Texture analysis was conducted in order to determine the oriental distribution of the grains.The obtained{111}pole figures demonstrate the texture evolution and reaffirm the anisotropy observed in mechanical properties.Scanning electron microscopy micrographs showed that different modes of fracture occurred after tensile testing in the two orthogonal directions. 展开更多
关键词 severe plastic deformation ultrafine grained hydrostatic tube cyclic expansion extrusion anisotropy texture
下载PDF
Growth behavior of ultrafine austenite grains in microalloyed steel 被引量:2
19
作者 Linxiu DU Shengjie YAO Xianghua LIU Guodong WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第1期7-12,共6页
Ultrafine austenite gains (UFAGs) with size of 1-5 μm were prepared through repetitive treatment, four times, of rapid heating and quenching, and the growth behaviors of these UFACs during both the reheating and co... Ultrafine austenite gains (UFAGs) with size of 1-5 μm were prepared through repetitive treatment, four times, of rapid heating and quenching, and the growth behaviors of these UFACs during both the reheating and cooling stages were investigated. The results indicated that UFAGs without pinning particles appeared with significant coarsening when the reheating temperature reached 1000 ℃. Although coarsening still occurred in the cooling stage, the growth was obscured during the isothermal holding process at temperatures between 900 ℃ and At3. 展开更多
关键词 ultrafine austenite grain GROWTH Microalloyed steel Second-phase particle
下载PDF
New Heat Treatment Technology for Grain Refining of Structural Steel 被引量:2
20
作者 Lü Bo ZHANG Fu-cheng +1 位作者 CAO Guo-hua ZHANG Ji-ming 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2005年第6期49-53,共5页
The application of electrical contact heating (ECH) in austenitic grain refining of ultra-pure 42CrMoVNb steel was introduced. The ECH equipment was designed to reach uniform heating of uniform heat transfer in the ... The application of electrical contact heating (ECH) in austenitic grain refining of ultra-pure 42CrMoVNb steel was introduced. The ECH equipment was designed to reach uniform heating of uniform heat transfer in the sample. The 42CrMoVNb steel treated possesses uniform microstructure with an average austenite grain size of 1.4 μm, higher strength (1 538 MPa) and impact toughness (81J/cm^2). 展开更多
关键词 electrical contact heating medium carbon alloy steel ultrafine grain 42CrMoVNb
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部