Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understan...Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.展开更多
Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases ...Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.展开更多
Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted...Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted to determine the rheological parameters and to analyze the rheological properties of the feedstocks at different milling time, powder loading and temperature. It is indicated through the results that the viscosity increases and the value of n decreases with the increase of milling time. The more the powder loading is, the higher the viscosity is. The empirical formula on the relationship between the viscosity and the powder loading is: ηr=η/ηb=A(1-Ф/Фmax)/^- m . The value m is calculated as 0.33. The flow activation energy Ea decreases with the increase of shear rate.展开更多
The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the ...The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.展开更多
The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof...The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.展开更多
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu...Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.展开更多
The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are ...The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed.展开更多
Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-...Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-1.3Fe (TCF alloy) and Ti-3Al-2.1Cr-1.3Fe (TACF alloy). In this study, we used Cr-Fe master alloy as one of the raw materials to develop the two new alloys. We introduce the microstructure and tensile properties of the two new alloys from β solution treated with different cooling methods. Optical microscopy (OM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) were employed to analyze the phase constitution, and scanning electron microscopy (SEM) was used to observe the fracture surfaces. The results indicate that the microstructures consist of β grain boundary and α′ martensite after water quenching (WQ), β matrix and α phase after air cooling (AC) and furnace cooling (FC), respectively. Also, the microstructure is the typical basketweave structures after FC. Of course, athermal ω is also observed by TEM after WQ. The strength increases with decreasing cooling rates and the plasticity is reversed. Because of the athermal ω, the strength and ductility are highest and lowest when the cooling method is WQ. The strength of TACF alloy is higher than the TCF alloy, but the plasticity is lower. The fracture surfaces are almost entirely covered with dimples under the cooling methods of AC and FC. Also, we observe an intergranular fracture area that is generated by athermal ω, although some dimples are observed after WQ.展开更多
Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity...Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.展开更多
Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950 s.Due to the excellent mechanical tribological properties,corrosion resistance...Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950 s.Due to the excellent mechanical tribological properties,corrosion resistance,biocompatibility,and antibacterial properties of titanium,it is getting much attention as a biomaterial for implants.Furthermore,titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site.These properties are crucial for producing high-strength metallic alloys for biomedical applications.Titanium alloys are manufactured into the three types ofα,β,andα+β.The scientific and clinical understanding of titanium and its potential applications,especially in the biomedical field,are still in the early stages.This review aims to establish a credible platform for the current and future roles of titanium in biomedicine.We first explore the developmental history of titanium.Then,we review the recent advancement of the utility of titanium in diverse biomedical areas,its functional properties,mechanisms of biocompatibility,host tissue responses,and various relevant antimicrobial strategies.Future research will be directed toward advanced manufacturing technologies,such as powder-based additive manufacturing,electron beam melting and laser melting deposition,as well as analyzing the effects of alloying elements on the biocompatibility,corrosion resistance,and mechanical properties of titanium.Moreover,the role of titania nanotubes in regenerative medicine and nanomedicine applications,such as localized drug delivery system,immunomodulatory agents,antibacterial agents,and hemocompatibility,is investigated,and the paper concludes with the future outlook of titanium alloys as biomaterials.展开更多
Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated b...Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.展开更多
Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of d...Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted.展开更多
Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder ...Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder metallurgy method followed by hot extrusion.Microstructural characterization results revealed the uniform distribution of reinforcement(Ti+GNPs)particles in the matrix,therefore(Ti+GNPs)particles act as an effective reinforcing filler to prevent the deformation.Room temperature tensile results showed that the addition of Ti+GNPs to monolithic Mg lead to increase in 0.2%yield strength(0.2%YS),ultimate tensile strength(UTS),and failure strain.Scanning Electron Microscopy(SEM),Energy-Dispersive X-ray Spectroscopy(EDS)and X-Ray Diffraction(XRD)were used to investigate the surface morphology,elemental dispersion and phase analysis,respectively.展开更多
A composite layer was prepared on the surface of Ti-6Al-4V alloy by nitriding-sulfurizing composite treatment,and its microstructure and phase structure were examined by scanning electron microscopy(SEM) and X-ray d...A composite layer was prepared on the surface of Ti-6Al-4V alloy by nitriding-sulfurizing composite treatment,and its microstructure and phase structure were examined by scanning electron microscopy(SEM) and X-ray diffraction(XRD),respectively.The tribological performance was measured to investigate its dependence on the nitriding-sulfurizing composite treatment process.The results indicated that the composite layer was mainly comprised of Ti2N,TiN,and TiS2.It was found that the composite layer exhibited superior tribological properties under dry friction and absolute sliding conditions due to the formation of sulfides with self-lubricating function.展开更多
Titanium and its alloys have long been used as implant materials due to their outstanding mechanical properties and apparent biocompatibility.Despite this,the search for better alloys has continued to be active by res...Titanium and its alloys have long been used as implant materials due to their outstanding mechanical properties and apparent biocompatibility.Despite this,the search for better alloys has continued to be active by researchers and industries alike,as there are still pressing issues that require attention.These include(1)a large mismatch in the elastic modulus of the implant material,which causes a stress shielding problem;(2)the release of harmful ions from Ti alloys after long-term use;(3)a low bioactivity of the Ti alloy surface,which prolongs the healing process.More research has been directed toward finding new generation Ti alloys composed of more biocompatible phases and modifying the surface of Ti alloys from naturally bio-inert to bioactive in order to circumvent the problems.This review examines recent work reported on the fabrication of Ti alloys,and based on the survey,major characteristics highlighted the importance of elastic modulus and the use of non-toxic metal elements to improve biocompatibility.In terms of surface modification of Ti alloys,numerous studies have found that a nano-scaled surface oxide layer grown on the surface is always beneficial to improving the bioactivity of Ti alloys for rapid recovery after implantation.This comprehensive review focuses on the appropriate phase and composition for new Ti alloys intended for use as biomedical implants,emphasizing both fabrication and surface modification methods.展开更多
In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect...In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect of α phase content on formation and evolution of ORL, and the stability and diffusion of oxygen in α- and β-Ti were investigated by first principles calculations to reveal the oxygen diffusion rate. TA15 with more α phases has a higher diffusion coefficient of ORL evolution than TC4, resulting in forming thicker ORL on TA15 under the same thermal exposure condition. The first principles calculations indicate that octahedral interstice of α-Ti is the most stable site for oxygen atom. The nearest neighbor diffusion between octahedral interstices along the [0001] direction in α-Ti presenting the lowest activation energy is the most favorable oxygen diffusion mechanism in α- and β-Ti.展开更多
A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimo...A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys.展开更多
Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experim...Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experimentally shown that a drop in the lower superplastic flow temperature with decreasing mean grain size provides an opportunity to decrease the temperature at whicmethods for titanium alloys.展开更多
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.
基金financial supports from the National Key R&D Program of China (No.2023YFB3712400)National Natural Science Foundation of China (No.52371040)Joint Fund for Regional Innovation of Hunan Provincial Natural Science Foundation,China (No.2023JJ50333)。
文摘Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.U23A20540,52371127)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3035)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2024ZZTS0077)。
文摘Due to a series of exceptional properties,titanium and titanium alloys have received extensive attention in recent years.Different from other alloy systems,there are two allotropes and a sequence of metastable phases in titanium alloys.By summarizing the recent investigations,the phase transformation processes corresponding to the common phases and also some less reported phases are reviewed.For the phase transformation only involvingαandβphases,it can be divided intoβ→αtransformation and a reverse transformation.The former one has been demonstrated from the orientation relationship betweenαandβphases and the regulation ofαmorphology.For the latter transformation,the role of the stress has been discussed.In terms of the metastable phases,the mechanisms of phase formation and their effects on microstructure and mechanical properties have been discussed.Finally,some suggestions about the development of titanium alloys have been proposed.
文摘Ti-6Al-4V alloy powder was taken as raw material. 60%(mass fraction) paraffin, 35%low density polyethylene and 5%stearic acid were employed as binders to prepare injection feedstocks. Capillary rheometer was adopted to determine the rheological parameters and to analyze the rheological properties of the feedstocks at different milling time, powder loading and temperature. It is indicated through the results that the viscosity increases and the value of n decreases with the increase of milling time. The more the powder loading is, the higher the viscosity is. The empirical formula on the relationship between the viscosity and the powder loading is: ηr=η/ηb=A(1-Ф/Фmax)/^- m . The value m is calculated as 0.33. The flow activation energy Ea decreases with the increase of shear rate.
文摘The chip deformation of titanium alloys is typical shear localization from low cutting speed, which is general phenomenon in machining of difficult to cut material at high cutting speed. This paper investigates the chip formation process in machining titanium alloys, and puts forward a three stage model describing formation process of shear localized chip. This model explains how the shear localized chip segments initiate, become trapezoid and form serrated chips.
基金Project(20123021004) supported by the Key Program of the Aeronautical Science Foundation of ChinaProject(51312030501) supported by the Pre-Research Program of China
文摘The effect of friction pressure p and oxygen concentration xo on the fireproof performance of Ti40 titanium alloy was studied by frictional ignition test, the U--Xo relationship quantitatively describing the fireproof performance of Ti40 was established and the fireproof mechanism of Ti40 was analyzed by SEM, XRD and EDS. The results show that the p--xo relationship of Ti40 obeys parabolic rule. The varying range of xo is about 25% while p varies within 0.1-0.25 MPa. When Xo is 〉70%, Ti40 is ignited immediately at room temperature and develops into continual and steady burning, and the duration of burning is more than 10 s. The fireproof performance of Ti40 is better than TC4 while xo of Ti40 is at least 40% higher than TC4. When Xo is low, the fireproof performance of Ti40 is more sensitive to p; when Xo increases, it is more sensitive to Xo. The forming of fused oxides of V205, TiO2 and Cr203 with strong inner interaction during friction is the basic reason of high fireproof performance of Ti40.
基金supported by the National Natural Science Foundation of China(No.52274359)Guangdong Basic and Applied Basic Research Foundation,China(No.2022A1515110406)+3 种基金Beijing Natural Science Foundation,China(No.2212035)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-TP-19005C1Z and 00007718)the Aeroengine Group University Research Cooperation Project,China(No.HFZL2021CXY021)the State Key Lab of Advanced Metals and Materials,University of Science and Technology Beijing,China(Nos.2021Z-03 and 2022Z-14).
文摘Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems.
文摘The aim of this paper was to study the reaction between a Ti-6Al-4V alloy and boron nitride based investment shell molds used for investment casting titanium. In BN based investment shell molds, the face coatings are made of pretreated hexagonal boron nitride (hBN) with a few yttria (Y2O3) and colloidal yttria as binder. The Ti-6Al-4V alloy was melted in a controlled atmosphere induction furnace with a segment water-cooled copper crucible. The cross-section of reaction interface between Ti alloys and shell mold was investigated by electron probe micro-analyzer (EPMA) and microhardness tester. The results show that the reaction is not serious, the thickness of the reacting layer is about 30-50 μm, and the thickness of α-case is about 180-200 pro. Moreover the α-case formation mechanism was also discussed.
基金financially sponsored by the International Science and Technology Cooperation Project (No.2010DFA52280)
文摘Titanium and titanium alloys have several advantages, but the cost of titanium alloys is very expensive compared with the traditional metal materials. This article introduces two new low-cost titanium alloys Ti-2.1Cr-1.3Fe (TCF alloy) and Ti-3Al-2.1Cr-1.3Fe (TACF alloy). In this study, we used Cr-Fe master alloy as one of the raw materials to develop the two new alloys. We introduce the microstructure and tensile properties of the two new alloys from β solution treated with different cooling methods. Optical microscopy (OM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM) were employed to analyze the phase constitution, and scanning electron microscopy (SEM) was used to observe the fracture surfaces. The results indicate that the microstructures consist of β grain boundary and α′ martensite after water quenching (WQ), β matrix and α phase after air cooling (AC) and furnace cooling (FC), respectively. Also, the microstructure is the typical basketweave structures after FC. Of course, athermal ω is also observed by TEM after WQ. The strength increases with decreasing cooling rates and the plasticity is reversed. Because of the athermal ω, the strength and ductility are highest and lowest when the cooling method is WQ. The strength of TACF alloy is higher than the TCF alloy, but the plasticity is lower. The fracture surfaces are almost entirely covered with dimples under the cooling methods of AC and FC. Also, we observe an intergranular fracture area that is generated by athermal ω, although some dimples are observed after WQ.
基金Acknowledgments The authors wish to thank the National Natural Science Foundation of China (Grant No. 51005234 and 50905180), the Foundation of China University of Mining and Technology (Grant No. 2009A056) and the Natural Science Foundation of Jiangsu Province (Grant No. BK2008005).
文摘Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5 × 10^6 Pa.m^1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.
基金supported by the University of Malaya(UM)Research Grant:(FRGS/1/2020/TK0/UM/02/40)。
文摘Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950 s.Due to the excellent mechanical tribological properties,corrosion resistance,biocompatibility,and antibacterial properties of titanium,it is getting much attention as a biomaterial for implants.Furthermore,titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site.These properties are crucial for producing high-strength metallic alloys for biomedical applications.Titanium alloys are manufactured into the three types ofα,β,andα+β.The scientific and clinical understanding of titanium and its potential applications,especially in the biomedical field,are still in the early stages.This review aims to establish a credible platform for the current and future roles of titanium in biomedicine.We first explore the developmental history of titanium.Then,we review the recent advancement of the utility of titanium in diverse biomedical areas,its functional properties,mechanisms of biocompatibility,host tissue responses,and various relevant antimicrobial strategies.Future research will be directed toward advanced manufacturing technologies,such as powder-based additive manufacturing,electron beam melting and laser melting deposition,as well as analyzing the effects of alloying elements on the biocompatibility,corrosion resistance,and mechanical properties of titanium.Moreover,the role of titania nanotubes in regenerative medicine and nanomedicine applications,such as localized drug delivery system,immunomodulatory agents,antibacterial agents,and hemocompatibility,is investigated,and the paper concludes with the future outlook of titanium alloys as biomaterials.
文摘Ti-4.5Al-6.0Mo-1.5Fe, Ti-6Al-1Mo-1Fe and Ti-6Al-4V alloys were prepared by blended elemental powder metallurgy (PM) process, and the effects of Nd on the microstructures and mechanical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). It was found out that the addition of Nd increased the density of sintered titanium alloys slightly by a maximum increment of 1% because small amount of liquid phase occurred during sintering. The addition of Nd shows little effect on the improvement of tensile strength, while the elongation is significantly improved. For example, the elongation of Ti-4.SAl-6.0Mo-1.5Fe can be increased from 1% without addition of Nd to 13% at a Nd content of 1.2 wt pct.
基金supported by the Shandong Provincial Key Research and Development Plan(Project No.2016GGX102018)Shandong Provincial Natural Science Foundation,China(Project No.ZR2017MEE063)
文摘Laser cladding is a new surface modification technology, and is widely used for fabricating wear and corrosion resistant composites coatings. Self-fluxing alloys have many advantages, such as excellent properties of deoxidizing and slagging, high wear resistance, low melting point and easy cladding, and are often used in laser cladding to improve wear and corrosion resistance of titanium and its alloys. In this paper, the recent development of Ni-based and Co-based self-fluxing alloy coatings which includes the influenee of rare earth and ceramic particles in coatings are summarized. Besides, the effects of processing parameters, such as laser power and scanning speed, on coatings are reviewed. Finally, the trend of development in the future is forecasted.
基金The present work was supported by the National Natural Science Funds of China(No.50725413)the Ministry of Science and Technology of China(MOST)(No.2010DFR50010 and 2011FU125Z07)Chongqing Science and Technology Commission(CSTC2013jcyjC60001).
文摘Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder metallurgy method followed by hot extrusion.Microstructural characterization results revealed the uniform distribution of reinforcement(Ti+GNPs)particles in the matrix,therefore(Ti+GNPs)particles act as an effective reinforcing filler to prevent the deformation.Room temperature tensile results showed that the addition of Ti+GNPs to monolithic Mg lead to increase in 0.2%yield strength(0.2%YS),ultimate tensile strength(UTS),and failure strain.Scanning Electron Microscopy(SEM),Energy-Dispersive X-ray Spectroscopy(EDS)and X-Ray Diffraction(XRD)were used to investigate the surface morphology,elemental dispersion and phase analysis,respectively.
文摘A composite layer was prepared on the surface of Ti-6Al-4V alloy by nitriding-sulfurizing composite treatment,and its microstructure and phase structure were examined by scanning electron microscopy(SEM) and X-ray diffraction(XRD),respectively.The tribological performance was measured to investigate its dependence on the nitriding-sulfurizing composite treatment process.The results indicated that the composite layer was mainly comprised of Ti2N,TiN,and TiS2.It was found that the composite layer exhibited superior tribological properties under dry friction and absolute sliding conditions due to the formation of sulfides with self-lubricating function.
基金funded by the Malaysian Ministry of Higher Education under the Fundamental Research Grant Scheme(Project Code FRGS/1/2018/TK05/USM/01/5)the first author is supported financially by a scholarship from Universiti Sains Malaysia(USM Fellowship)。
文摘Titanium and its alloys have long been used as implant materials due to their outstanding mechanical properties and apparent biocompatibility.Despite this,the search for better alloys has continued to be active by researchers and industries alike,as there are still pressing issues that require attention.These include(1)a large mismatch in the elastic modulus of the implant material,which causes a stress shielding problem;(2)the release of harmful ions from Ti alloys after long-term use;(3)a low bioactivity of the Ti alloy surface,which prolongs the healing process.More research has been directed toward finding new generation Ti alloys composed of more biocompatible phases and modifying the surface of Ti alloys from naturally bio-inert to bioactive in order to circumvent the problems.This review examines recent work reported on the fabrication of Ti alloys,and based on the survey,major characteristics highlighted the importance of elastic modulus and the use of non-toxic metal elements to improve biocompatibility.In terms of surface modification of Ti alloys,numerous studies have found that a nano-scaled surface oxide layer grown on the surface is always beneficial to improving the bioactivity of Ti alloys for rapid recovery after implantation.This comprehensive review focuses on the appropriate phase and composition for new Ti alloys intended for use as biomedical implants,emphasizing both fabrication and surface modification methods.
基金Project(51701128) supported by the National Natural Science Foundation of China
文摘In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect of α phase content on formation and evolution of ORL, and the stability and diffusion of oxygen in α- and β-Ti were investigated by first principles calculations to reveal the oxygen diffusion rate. TA15 with more α phases has a higher diffusion coefficient of ORL evolution than TC4, resulting in forming thicker ORL on TA15 under the same thermal exposure condition. The first principles calculations indicate that octahedral interstice of α-Ti is the most stable site for oxygen atom. The nearest neighbor diffusion between octahedral interstices along the [0001] direction in α-Ti presenting the lowest activation energy is the most favorable oxygen diffusion mechanism in α- and β-Ti.
基金supported by the China–Korea Joint Research Program of Ministry of Science and Technology of China (No. 2012DFG51540)
文摘A series of Ti–Al–V titanium alloy bars with nominal composition Ti–7Al–5V ELI,Ti–5Al–3V ELI,commercial Ti–6Al–4V ELI and commercial Ti–6Al–4V were prepared.These alloys were then heat treated to obtain bimodal or equiaxed microstructures with various contents of primary a phase.Dynamic compression properties of the alloys above were studied by split Hopkinson pressure bar system at strain rates from 2,000 to 4,000 s-1.The results show that Ti–6Al–4V alloy with equiaxed primary a(ap)volume fraction of 45 vol%or 67 vol%exhibits good dynamic properties with high dynamic strength and absorbed energy,as well as an acceptable dynamic plasticity.However,all the Ti53ELI specimens and Ti64ELI specimens with ap of 65 vol%were not fractured at a strain rate of4,000 s-1.It appears that the undamaged specimens still have load-bearing capability.Dynamic strength of Ti–Al–V alloy can be improved as the contents of elements Al,V,Fe,and O increase,while dynamic strain is not sensitive to the composition in the appropriate range.The effects of primary alpha volume fraction on the dynamic properties are dependent on the compositions of Ti–Al–V alloys.
文摘Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experimentally shown that a drop in the lower superplastic flow temperature with decreasing mean grain size provides an opportunity to decrease the temperature at whicmethods for titanium alloys.