A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factor...A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.展开更多
During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetri...During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic tra- jectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differ- ential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was pro- grammed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed pene- trators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of ter- minal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.展开更多
This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) tem...This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) temperature τ_B.ballistic density p_B) from the standardized met messages.The weighting factors are used for the calculation of ballistic elements μ_B that are incorporated into the trajectory calculations characteristics of weapon and ammunition.Two different methodologies practically used in the praxis are analysed and compared.For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed.On the basis of the analyses conducted,the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.展开更多
The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study emp...The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.展开更多
Projectile trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs) which are a special k...Projectile trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs) which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements mB(ballistic wind wB, virtual temperature tB, pressure pB, density rB, speed of sound a) as well. An effect of weapon system parameters can be incorporated into calculations through the reference height of trajectory-RHT.RHT are also calculated from WFFs. Methods based on RHT are far more effective than traditional methods that use weighting factors q.We have found that the existing theory of RHT has several shortcomings due to we created an improved theory of generalized RHT which represent a special sensitivity parameters of dynamical systems. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.展开更多
In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel(NABK) for the Canadian snipers, DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 ...In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel(NABK) for the Canadian snipers, DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom(6-DOF) trajectory simulations for a set of relevant vignettes for the snipers, and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel(NABK) adapted to simulate small-arm ammunition trajectories. To conduct this study, DRDC Valcartier Research Centre used BALCO v1.0b. This paper presents(1) the process and the methodology employed to carry out the sniper direct fire solution study,(2) the modeling and the simulation of the sniper projectile, the approach used in calculating the firing solutions, and the results of direct fire simulations for the sniper vignettes, and(3) an analysis of firing solutions obtained with the BALCO engine versus those of NABK. The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.展开更多
It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire ...It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.展开更多
The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guid...The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guidance sensors (both radar and infrared) are simulated. 3D model using MATLAB is developed for a multistage target with ascent phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The radar cross section (RCS) and infrared radiation (IR) of the target structure is estimated as a function of the flight profile. The Kill Vehicle (KV) design is examined as a function of the KV mass, acceleration capability, aimpoint offset and impact energy to destroy the target. The aim of the CDA is to: detect the launch of a threat ballistic missile, determine whether the detected object is a threat,define the characteristics of the threat ballistic missile, develop a firing solution to negate the threat ballistic missile, engage the threat ballistic missile, and assess the effectiveness for ballistic missile intercept. The architecture is modeled in Matlab.展开更多
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolutio...The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.展开更多
The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its...The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.展开更多
A fast and accurate algorithm is established in this paper to increase the precision of ballistic trajectory prediction.The algorithm is based on the six-degree-of-freedom(6 DOF)trajectory equations,to estimate the pr...A fast and accurate algorithm is established in this paper to increase the precision of ballistic trajectory prediction.The algorithm is based on the six-degree-of-freedom(6 DOF)trajectory equations,to estimate the projectile attitude angles in every measuring time.Hereby,the algorithm utilizes the Davidon-Fletcher-Powell(DFP)method to solve nonlinear equations and Doppler radar trajectory test information containing only position coordinates of the projectile to reconstruct the angular information.The″position coordinates by the test″and″angular displacements by reconstruction″at the end phase of the radar measurement are used as an initial value for the trajectory computation to extrapolate the trajectory impact point.The numerical simulations validate the proposed method and demonstrate that the estimated impact point agrees very well with the real one.Morover,other artillery trajectory can be predicted by the algorithm,and other trajectory models,such as 4 DOF and 5 DOF models,can also be incorporated into the proposed algorithm.展开更多
Ballistic Missile Trajectory Prediction(BMTP)is critical to air defense systems.Most Trajectory Prediction(TP)methods focus on the coast and reentry phases,in which the Ballistic Missile(BM)trajectories are modeled as...Ballistic Missile Trajectory Prediction(BMTP)is critical to air defense systems.Most Trajectory Prediction(TP)methods focus on the coast and reentry phases,in which the Ballistic Missile(BM)trajectories are modeled as ellipses or the state components are propagated by the dynamic integral equations on time scales.In contrast,the boost-phase TP is more challenging because there are many unknown forces acting on the BM in this phase.To tackle this difficult problem,a novel BMTP method by using Gaussian Processes(GPs)is proposed in this paper.In particular,the GP is employed to train the prediction error model of the boost-phase trajectory database,in which the error refers to the difference between the true BM state at the prediction moment and the integral extrapolation of the BM state.And the final BMTP is a combination of the dynamic equation based numerical integration and the GP-based prediction error.Since the trained GP aims to capture the relationship between the numerical integration and the unknown error,the modified BM state prediction is closer to the true one compared with the original TP.Furthermore,the GP is able to output the uncertainty information of the TP,which is of great significance for determining the warning range centered on the predicted BM state.Simulation results show that the proposed method effectively improves the BMTP accuracy during the boost phase and provides reliable uncertainty estimation boundaries.展开更多
文摘A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.
基金supported by the National Outstanding Young Scientist Foundation of China(Grant 11225213)the Fund for Creative Research Group of China(Grant 51321064)the National Natural Science Foundations of China(Grants 11172282,11390362,and 51378015)
文摘During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic tra- jectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differ- ential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was pro- grammed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed pene- trators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of ter- minal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.
基金support of financial means from the industrial research project of the Ministry of the Interior of the Czech Republic-project code VG20122015076:"Two survey points range-finding system utilization for perimeter security(screen)"the Research project for the development of the Department of Weapons and Ammunition,Faculty of Military Technology, University of Defence,Brno,PRO K-201
文摘This paper deals with the issue of preparation of the aiming angles with the use of tabular firing tables and needed determination of the ballistic elements μ_B(ballistic wind w_B,w_(xB),w_(ZB),ballistic(virtual) temperature τ_B.ballistic density p_B) from the standardized met messages.The weighting factors are used for the calculation of ballistic elements μ_B that are incorporated into the trajectory calculations characteristics of weapon and ammunition.Two different methodologies practically used in the praxis are analysed and compared.For the comparison of the two methodologies the reference height of trajectory determined from the weighting factor functions is employed.On the basis of the analyses conducted,the potential for further increase in accuracy of these aiming angles preparation methods is pointed out.
基金supported by the Na- tional Natural Science Foundation of China (No. 11472135)the Science Challenge Project (No. JCKY2016212A506- 0104)
文摘The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.
基金the Research Project for the Development of the Department of Weapons and Ammunition, Faculty of Military Technology, University of Defence, Brno, DZRO VYZBROJ
文摘Projectile trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs) which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements mB(ballistic wind wB, virtual temperature tB, pressure pB, density rB, speed of sound a) as well. An effect of weapon system parameters can be incorporated into calculations through the reference height of trajectory-RHT.RHT are also calculated from WFFs. Methods based on RHT are far more effective than traditional methods that use weighting factors q.We have found that the existing theory of RHT has several shortcomings due to we created an improved theory of generalized RHT which represent a special sensitivity parameters of dynamical systems. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.
文摘In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel(NABK) for the Canadian snipers, DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom(6-DOF) trajectory simulations for a set of relevant vignettes for the snipers, and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel(NABK) adapted to simulate small-arm ammunition trajectories. To conduct this study, DRDC Valcartier Research Centre used BALCO v1.0b. This paper presents(1) the process and the methodology employed to carry out the sniper direct fire solution study,(2) the modeling and the simulation of the sniper projectile, the approach used in calculating the firing solutions, and the results of direct fire simulations for the sniper vignettes, and(3) an analysis of firing solutions obtained with the BALCO engine versus those of NABK. The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.
基金support of financing from the Research Project for the Development of the Department of Weapons and Ammunition, Faculty of Military Technology, University of Defence, Brno, DZRO K–201
文摘It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model.Trajectories calculated under non-standard conditions are considered to be perturbed.The tools utilized for the analysis of perturbed trajectories are weighting factor functions(WFFs)which are a special kind of sensitivity functions.WFFs are used for calculation of meteo ballistic elements B(ballistic wind w B,densityρB,virtual temperatureτB,pressure p B)as well.We have found that the existing theory of WFF calculation has several significant shortcomings.The aim of the article is to present a new,improved theory of generalized WFFs that eliminates the deficiencies found.Using this theory will improve methods for designing firing tables,fire control systems algorithms,and meteo message generation algorithms.
文摘The design review, simulation and validation of a Conceptual Design Architecture (CDA) for Ballistic Missile Defense (BMD) are presented. An intercept system that contains a Ground Based Interceptor (GBI) and its guidance sensors (both radar and infrared) are simulated. 3D model using MATLAB is developed for a multistage target with ascent phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The radar cross section (RCS) and infrared radiation (IR) of the target structure is estimated as a function of the flight profile. The Kill Vehicle (KV) design is examined as a function of the KV mass, acceleration capability, aimpoint offset and impact energy to destroy the target. The aim of the CDA is to: detect the launch of a threat ballistic missile, determine whether the detected object is a threat,define the characteristics of the threat ballistic missile, develop a firing solution to negate the threat ballistic missile, engage the threat ballistic missile, and assess the effectiveness for ballistic missile intercept. The architecture is modeled in Matlab.
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
基金supported by China Postdoctoral Science Foundation(20080149320080430223)the Natural Science Foundation of An-hui Province (090412043)
文摘The midcourse ballistic closely spaced objects(CSO) create blur pixel-cluster on the space-based infrared focal plane,making the super-resolution of CSO quite necessary.A novel algorithm of CSO joint super-resolution and trajectory estimation is presented.The algorithm combines the focal plane CSO dynamics and radiation models,proposes a novel least square objective function from the space and time information,where CSO radiant intensity is excluded and initial dynamics(position and velocity) are chosen as the model parameters.Subsequently,the quantum-behaved particle swarm optimization(QPSO) is adopted to optimize the objective function to estimate model parameters,and then CSO focal plane trajectories and radiant intensities are computed.Meanwhile,the estimated CSO focal plane trajectories from multiple space-based infrared focal planes are associated and filtered to estimate the CSO stereo ballistic trajectories.Finally,the performance(CSO estimation precision of the focal plane coordinates,radiant intensities,and stereo ballistic trajectories,together with the computation load) of the algorithm is tested,and the results show that the algorithm is effective and feasible.
文摘The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20133219110037)the Natural Science Foundation of China (No.11472135)the Program for New Century Excellent Talents in University(No.NCET-10-0075)
文摘A fast and accurate algorithm is established in this paper to increase the precision of ballistic trajectory prediction.The algorithm is based on the six-degree-of-freedom(6 DOF)trajectory equations,to estimate the projectile attitude angles in every measuring time.Hereby,the algorithm utilizes the Davidon-Fletcher-Powell(DFP)method to solve nonlinear equations and Doppler radar trajectory test information containing only position coordinates of the projectile to reconstruct the angular information.The″position coordinates by the test″and″angular displacements by reconstruction″at the end phase of the radar measurement are used as an initial value for the trajectory computation to extrapolate the trajectory impact point.The numerical simulations validate the proposed method and demonstrate that the estimated impact point agrees very well with the real one.Morover,other artillery trajectory can be predicted by the algorithm,and other trajectory models,such as 4 DOF and 5 DOF models,can also be incorporated into the proposed algorithm.
基金support from National Natural Science Foundation of China(Nos.61873205,61771399)Aerospace Science Foundation of China(No.2019-HT-XGD)Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-101).
文摘Ballistic Missile Trajectory Prediction(BMTP)is critical to air defense systems.Most Trajectory Prediction(TP)methods focus on the coast and reentry phases,in which the Ballistic Missile(BM)trajectories are modeled as ellipses or the state components are propagated by the dynamic integral equations on time scales.In contrast,the boost-phase TP is more challenging because there are many unknown forces acting on the BM in this phase.To tackle this difficult problem,a novel BMTP method by using Gaussian Processes(GPs)is proposed in this paper.In particular,the GP is employed to train the prediction error model of the boost-phase trajectory database,in which the error refers to the difference between the true BM state at the prediction moment and the integral extrapolation of the BM state.And the final BMTP is a combination of the dynamic equation based numerical integration and the GP-based prediction error.Since the trained GP aims to capture the relationship between the numerical integration and the unknown error,the modified BM state prediction is closer to the true one compared with the original TP.Furthermore,the GP is able to output the uncertainty information of the TP,which is of great significance for determining the warning range centered on the predicted BM state.Simulation results show that the proposed method effectively improves the BMTP accuracy during the boost phase and provides reliable uncertainty estimation boundaries.