In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocit...In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocity of I Cr18Ni9Ti are obtained by solving the Rayleigh-Lamb equation. The incident angles of different modes are determined through theoretical calculation and experimental analyses. Artificial defects of through-wall slots with different dimensions are made and tested. Experimental scattering effects of the fundamental symmetric mode S2 and asymmetric modes A1 and A0 are analysed and compared. The results show that mode Ao is suitable for detecting artificial defect, and the amplitude of the received signals are in good agreement with the defect size. Brazed weldment specimen containing lack of brazing with certain dimensions is made. Using the same methodology, scattering effects produced by weld defects are measured. The results show that the clutter wave brought about by the filler metal will certainly disturbs the identification of defect signal. But, when the defect is 3.0 mm in width, the presented mode Ao could be used potentially.展开更多
Brazed weldment with lattice structure has been widely used in aerospace industry. The non-destructive testing is often difficult because of the poor inspection accessibility. The present paper illustrates how the pla...Brazed weldment with lattice structure has been widely used in aerospace industry. The non-destructive testing is often difficult because of the poor inspection accessibility. The present paper illustrates how the plane-like defect lack of brazing can be detected rapidly in this kind of structure by using ultrasonic Lamb wave. Experimental weldments are prepared and weld defect are tested using S2 mode Lamb wave. Acoustic shadow technique is employed based on Lamb wave testing method. The character of the tested D-scan image and A-scan signal is studied. The experimental results show that acoustic shadow based Lamb wave testing method is effective in detecting through-wall lack of brazing. Meanwhile, the D-scan tested data can be rapidly collected and easily interpreted compared with pulse echo bused Lamb wave testing method.展开更多
基金This project is supported by International Cooperation Project (2007DFR70070), National Natural Science Foundation (50775054), Fundamental Research Funds for the Central Universities ( Grant No. HIT. NSRIF. 2009035 ) and China Postdoctoral Seienee Foundation (20080440873).
文摘In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocity of I Cr18Ni9Ti are obtained by solving the Rayleigh-Lamb equation. The incident angles of different modes are determined through theoretical calculation and experimental analyses. Artificial defects of through-wall slots with different dimensions are made and tested. Experimental scattering effects of the fundamental symmetric mode S2 and asymmetric modes A1 and A0 are analysed and compared. The results show that mode Ao is suitable for detecting artificial defect, and the amplitude of the received signals are in good agreement with the defect size. Brazed weldment specimen containing lack of brazing with certain dimensions is made. Using the same methodology, scattering effects produced by weld defects are measured. The results show that the clutter wave brought about by the filler metal will certainly disturbs the identification of defect signal. But, when the defect is 3.0 mm in width, the presented mode Ao could be used potentially.
基金The work is supported by the National Natural Science Foundation of China (51005056,51175113), the Fundamental Research Funds for the Central Universities ( Grant No. HIT. NSRIF. 2009035).
文摘Brazed weldment with lattice structure has been widely used in aerospace industry. The non-destructive testing is often difficult because of the poor inspection accessibility. The present paper illustrates how the plane-like defect lack of brazing can be detected rapidly in this kind of structure by using ultrasonic Lamb wave. Experimental weldments are prepared and weld defect are tested using S2 mode Lamb wave. Acoustic shadow technique is employed based on Lamb wave testing method. The character of the tested D-scan image and A-scan signal is studied. The experimental results show that acoustic shadow based Lamb wave testing method is effective in detecting through-wall lack of brazing. Meanwhile, the D-scan tested data can be rapidly collected and easily interpreted compared with pulse echo bused Lamb wave testing method.