Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
[Objectives]The extraction conditions of formula oolong tea were investigated by an orthogonal experiment.[Methods]The technical conditions were optimized by the 4C method,and the application of formula oolong tea ext...[Objectives]The extraction conditions of formula oolong tea were investigated by an orthogonal experiment.[Methods]The technical conditions were optimized by the 4C method,and the application of formula oolong tea extract in cigarettes was studied.[Results]①In the experimental range,the best sensory evaluation effect of formula oolong tea extract was obtained with extraction conditions of 70%ethanol as extraction solvent,extraction time h,extraction temperature 25℃,and ultrasonic frequency 80 kHz,and follow-up low-temperature concentration,low-temperature sedimentation and low-temperature centrifugation.②The effects of different centrifugal speeds on the quality of formula oolong tea extract were explored.The formula oolong tea extract obtained under the conditions of 3000 r/min and centrifugal time of 10 min showed the best evaluation effect with soft and delicate smoke,rich smoke fragrance,good comfort and refreshing mouthfeel.③The effective aroma components in the formula oolong tea extract were qualitatively analyzed by GC-MS.[Conclusions]This study provides high-quality raw materials and a theoretical basis for the research of independent flavor blending in cigarette industry enterprises.展开更多
The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear a...The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.展开更多
Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods ...Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods for determining joint normal stiffness were introduced and reviewed,among which MethodⅠ(the indirect measurement method),MethodⅡ(the direct determination method),MethodⅢ(the across-joint strain gauge measurement method)and MethodⅣ(the deformation measuring ring method)are via destructive uniaxial compression testing,while MethodⅤ(the best fitting method),MethodⅥ(the rapid evaluation method)and MethodⅦ(the effective modulus method)are through wave propagation principles and nondestructive ultrasonic testing.Subsequently,laboratory tests of intact and jointed sandstone specimens were conducted following the testing requirements and pro-cedures of those seven methods.A comparison among those methods was then performed.The results show that Method I,i.e.the benchmark method,is reliable and stable.MethodⅡhas a conceptual drawback,and its accuracy is acceptable at only very low stress levels.Relative errors in the results from MethodⅢare very large.With MethodⅣ,the testing results are sufficiently accurate despite the strict testing environment and complicated testing procedures.The results from MethodⅤare greatly unstable and significantly dependent on the natural frequency of the transducers.The joint normal stiffness determined with MethodⅥis stable and accurate,although data processing is complex.MethodⅦcould be adopted to determine the joint normal stiffness corresponding to the rock elastic deformation phase only.Consequently,it is suggested that MethodsⅠ,ⅣandⅥshould be adopted for the mea-surement of joint normal stiffness.The findings could be helpful in selecting an appropriate method to determine joint normal stiffness and,hence,to better solve discontinuous rock mass problems.展开更多
A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Theref...A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure.展开更多
The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principl...The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.展开更多
Aim To develop a high speed and high resolution dynamic rangefinding device for the measurement of large distances.Methods The device was comprised of an ultrasonic transmitter and a receiver,and a receiver , and a co...Aim To develop a high speed and high resolution dynamic rangefinding device for the measurement of large distances.Methods The device was comprised of an ultrasonic transmitter and a receiver,and a receiver , and a continuous ultrasonic wave amplitude-modulated by a low- frequency acoustic signal was used. The rangefinding was achieved by detecting the phase difference between the transmitted and received ultrasonic signals. The design principle. hard- ware implementation , experimental results and performance analysis of the device are included. Results and Conclusion Experiments show that the accuracy of the device are included. within 1.5m while its dynamic data update rate can be up to 40kHz.展开更多
Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different...Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.展开更多
Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When ...Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.展开更多
Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes...Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.展开更多
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration character...A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.展开更多
A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It ...A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors. The rotors were pressed on inner surface of the ring by means of a pre-pressure system. The bar shaped transducer has a sand- wich-like configuration,where two sets of piezoelectric element are bolted. One set excites a longitudinal vibration of the bar, and the other set excites a flexural vibration of the bar. The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method). The prototype of the motor was made and investigated experimentally for its performance. Its maximum torque and rotating speed are 0.25 N · m and 50 r/min, respectively.展开更多
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr...Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.展开更多
This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on ...This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on each array element is obtained by time reversing the signal received by the same element, which is generated by an imaginary source at the target. The excitation pulses from all array elements are transmitted and arrive at the target simultaneously, and focusing is achieved. The performance of the two methods is compared in numerical examples, and it is demonstrated that the proposed method achieves a satisfactory focusing and a good signal-to-noise ratio no matter where the target location is.展开更多
A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces...A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.展开更多
An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The fi...An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The filler used wereZn-Al alloys and Zn-Sn Alloys. The weight percent of Al in filler was ranging between 0, 5%, 10%, respectively.The weight percent of tin in filler was ranging between 0, 30%, 60% and 91%, respectively. The joining mechanismwas investigated by measuring the joining strength, hardness and analyzing the microstructure at interface of thejoint. The shear strength and microstructure of the joint strongly depend on the filler composition. The effect ofultrasound was derived primarily from acoustic cavitations, impact and friction of the filler against alumina ceramic.This improved the wetting between alumina and the filler, and reflected to improve the joint strength. Anotherultrasonic advantage as to reduce of the joining temperature, that reduced the thermal stress in the braze joint.展开更多
Irrigation with desalinated seawater is an effective way to use ocean resources and save freshwater resources.However,seawater irrigation would cause yield loss of rice.In order to explore the effects of ultrasonic se...Irrigation with desalinated seawater is an effective way to use ocean resources and save freshwater resources.However,seawater irrigation would cause yield loss of rice.In order to explore the effects of ultrasonic seed treatment on rice performances under seawater irrigation,the present study was conducted with three irrigation treatments(fresh water(SW0),ten times diluted seawater(SW1%,0.34%salinity),and five times diluted seawater(SW2%,0.68%salinity))and two seed treatments(ultrasonic treated seeds(UT)and untreated seeds(CK)).Compared with SW0+CK treatment,SW1+CK and SW2+CK treatments significantly decreased grain yield by 56.19%and 66.69%,spikelets per panicle by 30.11%and 55.80%,seed-setting rate by 23.05%and 18.87%,and 1000-grain weight by 4.55%and 14.50%,respectively.Seawater irrigation also significantly increased malonaldehyde(MDA)and proline contents and the activities of superoxide dismutase(SOD)and peroxidase(POD).Ultrasonic seed treatment significantly increased the grain number per panicle,seed-setting rate,and grain yield of rice under seawater irrigation.Compared with CK,UT treatment substantially reduced MDA content,SOD activity,and POD activity in SW1 and SW2 conditions.Furthermore,UT treatment significantly increased proline content and down-regulated proline dehydrogenase activity under seawater irrigation.We deduced that ultrasonic seed treatment enhanced the salinity tolerance of rice by inducing the proline accmulation.Our findings indicated that ultrasonic seed treatment could an effective strategy to promote rice productivity under seawater irrigation.展开更多
Electropolymerization of pyrrole under ultrasonic field at 20kHz was performed in a series of aqueous and propylene carbonate (PC) solutions. The ultrasonic wave with moderate intensity at the power of 44W, which is t...Electropolymerization of pyrrole under ultrasonic field at 20kHz was performed in a series of aqueous and propylene carbonate (PC) solutions. The ultrasonic wave with moderate intensity at the power of 44W, which is the power threshold of the ultrasonic generator used in this work to produce cavitation effect, enhance the conductivity and tensile strength of the polypyrrole films as prepared. However, too high intensity of the ultrasonic wave is harmful to the polymerization.展开更多
This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose a...This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose any undefined load on the specimen like the electrostatic excitation and also this is the first actual use of ultrasonic wave for exciting a microstructure in the literature. Secondly, the amplitudes of the microstructure are determined by image edge detection using a Mexican hat wavelet transform on the vibrating images of the microstructure. The vibrating images are captured by a CCD camera when the microstructure is vibrated by ultrasonic waves at a series of discrete high frequencies (〉30 kHz). Upon processing the vibrating images, the amplitudes at various excitation frequencies are obtained and an amplitude-frequency spectrum is obtained from which the resonant frequency is subsequently evaluated. A micro silicon structure consisting of a perforated plate (192 × 192 μm) and two cantilever beams (76 × 43 μm) which is about 4 μm thickness is tested. Since laser interferometry is not required, thermal effects on a test object can be avoided. Hence, the setup is relatively simple. Results show that the proposed method is a simple and effective approach for evaluating the dynamic characteristics of microstructures.展开更多
This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the...This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.展开更多
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
文摘[Objectives]The extraction conditions of formula oolong tea were investigated by an orthogonal experiment.[Methods]The technical conditions were optimized by the 4C method,and the application of formula oolong tea extract in cigarettes was studied.[Results]①In the experimental range,the best sensory evaluation effect of formula oolong tea extract was obtained with extraction conditions of 70%ethanol as extraction solvent,extraction time h,extraction temperature 25℃,and ultrasonic frequency 80 kHz,and follow-up low-temperature concentration,low-temperature sedimentation and low-temperature centrifugation.②The effects of different centrifugal speeds on the quality of formula oolong tea extract were explored.The formula oolong tea extract obtained under the conditions of 3000 r/min and centrifugal time of 10 min showed the best evaluation effect with soft and delicate smoke,rich smoke fragrance,good comfort and refreshing mouthfeel.③The effective aroma components in the formula oolong tea extract were qualitatively analyzed by GC-MS.[Conclusions]This study provides high-quality raw materials and a theoretical basis for the research of independent flavor blending in cigarette industry enterprises.
基金supported by the Na⁃tional Natural Science Foundation of China(No.11972016)the Natural Science Foundation of the Jiangsu Higher Educa⁃tion Institutions of China(No.23KJD460005)Scientif⁃ic Research Foundation for the Introduction of Talent in Nan⁃jing Vocational University of Industry Technology(No.YK21-04-02).
文摘The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.
基金supported by the Shenzhen Fundamental Research Program(Grant No.JCYJ20220818095605012)the National Natural Science Foundation of China(Grant No.51909026)the Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization(Grant No.2020-08).
文摘Rock joints are one of the vital discontinuities in a natural rock mass.How to accurately and conveniently determine joint normal stiffness is therefore significant in rock mechanics.Here,first,seven existing methods for determining joint normal stiffness were introduced and reviewed,among which MethodⅠ(the indirect measurement method),MethodⅡ(the direct determination method),MethodⅢ(the across-joint strain gauge measurement method)and MethodⅣ(the deformation measuring ring method)are via destructive uniaxial compression testing,while MethodⅤ(the best fitting method),MethodⅥ(the rapid evaluation method)and MethodⅦ(the effective modulus method)are through wave propagation principles and nondestructive ultrasonic testing.Subsequently,laboratory tests of intact and jointed sandstone specimens were conducted following the testing requirements and pro-cedures of those seven methods.A comparison among those methods was then performed.The results show that Method I,i.e.the benchmark method,is reliable and stable.MethodⅡhas a conceptual drawback,and its accuracy is acceptable at only very low stress levels.Relative errors in the results from MethodⅢare very large.With MethodⅣ,the testing results are sufficiently accurate despite the strict testing environment and complicated testing procedures.The results from MethodⅤare greatly unstable and significantly dependent on the natural frequency of the transducers.The joint normal stiffness determined with MethodⅥis stable and accurate,although data processing is complex.MethodⅦcould be adopted to determine the joint normal stiffness corresponding to the rock elastic deformation phase only.Consequently,it is suggested that MethodsⅠ,ⅣandⅥshould be adopted for the mea-surement of joint normal stiffness.The findings could be helpful in selecting an appropriate method to determine joint normal stiffness and,hence,to better solve discontinuous rock mass problems.
文摘A rockbolt acting in the rock mass is subjected to the combined action of the pull-out load and confining pressure, and the bond quality of the rockbolt directly affects the stability of the roadway and cavern. Therefore, in this study, confining pressure and pull-out load are applied to grouted rockbolt systems with bond defects by a numerical simulation method, and the rockbolt is detected by ultrasonic guided waves to study the propagation law of ultrasonic guided waves in defective rockbolt systems and the bond quality of rockbolts under the combined action of pull-out load and confining pressure. The numerical simulation results show that the length and location of bond defects can be detected by ultrasonic guided waves under the combined action of pull-out load and confining pressure. Under no pull-out load, with increasing confining pressure, the low-frequency part of the guided wave frequency in the rockbolt increases, the high-frequency part decreases, the weakening effect of the confining pressure on the guided wave propagation law increases, and the bond quality of the rockbolt increases. The existence of defects cannot change the strengthening effect of the confining pressure on the guided wave propagation law under the same pull-out load or the weakening effect of the pull-out load on the guided wave propagation law under the same confining pressure.
文摘The ultrasonic motor is a sort of new type of micromotor with special structure. By use of piezoelectric converse effect of ceramics, the electrical energy is transformed into mechanical energy. Its operating principle is quite different from that of the traditional motors. In this paper the equivalent circuits of the ring stator and even the whole motor are proposed after studying the equivalent circuit of piezoelectric vibrator. Then the paper makes detailed analyses of each part of the control system, which has been simplified by the equivalent circuit. The theory in this paper has been proved through experiments.
文摘Aim To develop a high speed and high resolution dynamic rangefinding device for the measurement of large distances.Methods The device was comprised of an ultrasonic transmitter and a receiver,and a receiver , and a continuous ultrasonic wave amplitude-modulated by a low- frequency acoustic signal was used. The rangefinding was achieved by detecting the phase difference between the transmitted and received ultrasonic signals. The design principle. hard- ware implementation , experimental results and performance analysis of the device are included. Results and Conclusion Experiments show that the accuracy of the device are included. within 1.5m while its dynamic data update rate can be up to 40kHz.
文摘Ultrasonic motor (USM) is a newly developed motor, and it has some excellent performances and useful features, therefore, it has been expected to be of practical use. However, the driving principle of USM is different from that of other electromagnetic type motors, and the mathematical model is complex to apply to motor control. Furthermore, the speed characteristics of the motor have heavy nonlinearity and vary with driving conditions. Hence, the precise speed control of USM is generally difficult. This paper proposes a new speed control scheme for USM using an artificial neural network. An accurate tracking response can be obtained by random initialization of the weights of the network owing to the powerful on line learning capability. Two prototype ultrasonic motors of travelling wave type were fabricated, both having 100 mm outer diameters of stator and piezoelectric ceramic. The usefulness and validity of the proposed control scheme are examined in experiments.
基金supported by the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)the Ministry of Education(No.K2014-06)the Reservoir Geophysical Research Center at Yangtze University
文摘Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.
基金supported by National Natural Science Foundation of China (Grant No. 10602004,Grant No. 50975006)Beijing Municipal Natural Science Foundation of China (Grant No. 2072003)+1 种基金Beijing Municipal Talent Developing Project of China (Grant No.20081B0501500173)Beijing Municipal Nova Program of China(Grant No. 2008A015)
文摘Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.
基金Funded by the National Basic Research Program (973 program) (No. 2011CB707602)the Digital Manufacturing Equipment and Technology National Key Laboratory,Huazhong University of Science and Technology (No. DMETKF2009002)National Sciences Foundation-Guangdong Natural Science Foundation,China (No.U0934004)
文摘A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.
基金Funded by the National Natural Sciences Foundation of China (No.10874090)Jiangsu Provincial High-Tech Project of China (No.BG2006005)
文摘A novel traveling wave ultrasonic motor was proposed. The structure of the motor is rather simple and different from the conventional traveling wave ultrasonic motors. Its production processes are very convenient. It is composed of a stator constituted with a ring and a bar shaped transducer and two cone shaped rotors. The rotors were pressed on inner surface of the ring by means of a pre-pressure system. The bar shaped transducer has a sand- wich-like configuration,where two sets of piezoelectric element are bolted. One set excites a longitudinal vibration of the bar, and the other set excites a flexural vibration of the bar. The ring's traveling wave excited with the longitudinal vibration and the bending vibration of the bar transducer was simulated with FEM (finite element method). The prototype of the motor was made and investigated experimentally for its performance. Its maximum torque and rotating speed are 0.25 N · m and 50 r/min, respectively.
基金Supported by National Natural Science Foundation of China(Grant No51605229)Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.16KJB460016)+1 种基金the“333”Project of Jiangsu Province,China(Grant No.BRA2015310)China Postdoctora Science Foundation(Grant No.2016M601844)
文摘Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174322 and 11074273)the Research Council of Norway (GrantNo. 186923/I30)
文摘This paper presents a new focusing and scanning method which focuses multiple waves on a target. The key of the method is to control excitation pulses for each element of the transducer array. The excitation pulse on each array element is obtained by time reversing the signal received by the same element, which is generated by an imaginary source at the target. The excitation pulses from all array elements are transmitted and arrive at the target simultaneously, and focusing is achieved. The performance of the two methods is compared in numerical examples, and it is demonstrated that the proposed method achieves a satisfactory focusing and a good signal-to-noise ratio no matter where the target location is.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50875057 and 51075082)the State Key Laboratory of Robotics and Systems (HIT No. SKLRS200901A04)
文摘A double cylinders type traveling wave ultrasonic motor using composite transducer was proposed.The proposed stator contained two cylinders and one composite transducer,and the transducer located on the outer surfaces of cylinders.The composite transducer included two exponential horns located on leading ends,and the horns insected with the cylinders at tip ends.Two degenerated flexural vibration modes spatially and temporally orthogonal to each other were excited in each cylinder by the composite transducer.In this new design,a single transducer could excite two flexural traveling waves in the cylinders.Thus,elliptical motions were achieved at the particles on the teeth.The working principle of the proposed motor was analyzed.The cylinder and transducer were designed with FEM.The resonant frequencies of two vibration modals of the stator were tuned to be the same,and the motion trajectories of nodes on the teeth were analyzed.Transient analysis results show that the motion trajectories of teeth are ellipses.The results of this paper can guide the development of this new type of ultrasonic motor.
文摘An ultrasonic wave was applied during brazing of alumina to Cu. First alumina was metallized by applying ultrasonicwave in braze bath. Then the metallized alumina was brazed with Cu using the same filler alloy. The filler used wereZn-Al alloys and Zn-Sn Alloys. The weight percent of Al in filler was ranging between 0, 5%, 10%, respectively.The weight percent of tin in filler was ranging between 0, 30%, 60% and 91%, respectively. The joining mechanismwas investigated by measuring the joining strength, hardness and analyzing the microstructure at interface of thejoint. The shear strength and microstructure of the joint strongly depend on the filler composition. The effect ofultrasound was derived primarily from acoustic cavitations, impact and friction of the filler against alumina ceramic.This improved the wetting between alumina and the filler, and reflected to improve the joint strength. Anotherultrasonic advantage as to reduce of the joining temperature, that reduced the thermal stress in the braze joint.
基金supported by National Natural Science Foundation of China(31971843)The Technology System of Modern Agricultural Industry in Guangdong(2020KJ105)Guangzhou Science and Technology Project(202103000075).
文摘Irrigation with desalinated seawater is an effective way to use ocean resources and save freshwater resources.However,seawater irrigation would cause yield loss of rice.In order to explore the effects of ultrasonic seed treatment on rice performances under seawater irrigation,the present study was conducted with three irrigation treatments(fresh water(SW0),ten times diluted seawater(SW1%,0.34%salinity),and five times diluted seawater(SW2%,0.68%salinity))and two seed treatments(ultrasonic treated seeds(UT)and untreated seeds(CK)).Compared with SW0+CK treatment,SW1+CK and SW2+CK treatments significantly decreased grain yield by 56.19%and 66.69%,spikelets per panicle by 30.11%and 55.80%,seed-setting rate by 23.05%and 18.87%,and 1000-grain weight by 4.55%and 14.50%,respectively.Seawater irrigation also significantly increased malonaldehyde(MDA)and proline contents and the activities of superoxide dismutase(SOD)and peroxidase(POD).Ultrasonic seed treatment significantly increased the grain number per panicle,seed-setting rate,and grain yield of rice under seawater irrigation.Compared with CK,UT treatment substantially reduced MDA content,SOD activity,and POD activity in SW1 and SW2 conditions.Furthermore,UT treatment significantly increased proline content and down-regulated proline dehydrogenase activity under seawater irrigation.We deduced that ultrasonic seed treatment enhanced the salinity tolerance of rice by inducing the proline accmulation.Our findings indicated that ultrasonic seed treatment could an effective strategy to promote rice productivity under seawater irrigation.
基金This work was supported by the National Natural Science Foundation of China.
文摘Electropolymerization of pyrrole under ultrasonic field at 20kHz was performed in a series of aqueous and propylene carbonate (PC) solutions. The ultrasonic wave with moderate intensity at the power of 44W, which is the power threshold of the ultrasonic generator used in this work to produce cavitation effect, enhance the conductivity and tensile strength of the polypyrrole films as prepared. However, too high intensity of the ultrasonic wave is harmful to the polymerization.
基金supported by the National Natural Science Foundation of China(10772086 and 10727201)the National University of Singapore(R-265-000-140-112)
文摘This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose any undefined load on the specimen like the electrostatic excitation and also this is the first actual use of ultrasonic wave for exciting a microstructure in the literature. Secondly, the amplitudes of the microstructure are determined by image edge detection using a Mexican hat wavelet transform on the vibrating images of the microstructure. The vibrating images are captured by a CCD camera when the microstructure is vibrated by ultrasonic waves at a series of discrete high frequencies (〉30 kHz). Upon processing the vibrating images, the amplitudes at various excitation frequencies are obtained and an amplitude-frequency spectrum is obtained from which the resonant frequency is subsequently evaluated. A micro silicon structure consisting of a perforated plate (192 × 192 μm) and two cantilever beams (76 × 43 μm) which is about 4 μm thickness is tested. Since laser interferometry is not required, thermal effects on a test object can be avoided. Hence, the setup is relatively simple. Results show that the proposed method is a simple and effective approach for evaluating the dynamic characteristics of microstructures.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10534040 and 40674059)the State Key Laboratory of Acoustics (IACAS) (Grant No. 200807)
文摘This paper proposes a method of simultaneous determination of the four layer parameters (mass density, longitudinal velocity, the thickness and attenuation) of an immersed linear-viscoelastic thin layer by using the normally-incident reflected and transmitted ultrasonic waves. The analytical formula of the layer thickness related to the measured trans- mitted transfer functions is derived. The two determination steps of the four layer parameters are developed, in which acoustic impedance, time-of-flight and attenuation are first determined by the reflected transfer functions. Using the derived formula, it successively calculates and determines the layer thickness, longitudinal velocity and mass density by the measured transmitted transfer functions. According to the two determination steps, a more feasible and simplified measurement setups is described. It is found that only three signals (the reference waves, the reflected and transmitted waves) need to be recorded in the whole measurement for the determination of the four layer parameters. A study of the stability of the determination method against the experimental noises and the error analysis of the four layer parameters are made. This study lays the theoretical foundation of the practical measurement of a linear-viscoelastic thin layer.