Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength...Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature.展开更多
基金the project from the International S&T Cooperation (No.2011DFR 50630)Special Research Program for Innovation Talents from Harbin Municipality of Science and Technology (2012RFXXG071,2010RFQXG020)Harbin Science and Technology Innovation Youth Talents Fund (No.2010RFQXG003)
文摘Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature.