期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer 被引量:1
1
作者 李博 胡国辉 周哲玮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第11期1415-1426,共12页
The gas flow in the Hartmann resonance tube is numerically investigated by the finite volume method based on the Roe solver. The oscillation of the flow is studied with the presence of a needle actuator set along the ... The gas flow in the Hartmann resonance tube is numerically investigated by the finite volume method based on the Roe solver. The oscillation of the flow is studied with the presence of a needle actuator set along the nozzle axis. Numerical results agree well with the theoretical and experimental results available. Numerical results indicate that the resonance mode of the resonance tube will switch by means of removing or adding the actuator. The gas flow in the ultrasonic gas atomization (USGA) nozzle is also studied by the same numerical methods. Oscillation caused by the Hartmann resonance tube structure, coupled with a secondary resonator, in the USGA nozzle is investigated. Effects of the variation of parameters on the oscillation are studied. The mechanism of the transition of subsonic flow to supersonic flow in the USGA nozzle is also discussed based on numerical results. 展开更多
关键词 Hartmann resonance tube spray atomization ultrasonic gas atomization finite volume method roe solver
下载PDF
Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni_(30)Cr_(25)Al_(15)Co_(15)Mo_(5)Ti_(5)Y_(5) HEA coating based on AIMD
2
作者 Xue Yan Cheng Zhang +3 位作者 Yangshuai Li Youjian Yi Ziruo Cui Bingyuan Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第11期257-269,共13页
A novel Ni_(30)Cr_(25)Al_(15)Co_(15)Mo_(5)Ti_(5)Y_(5) high-entropy alloy(HEA)coating was irradiated to optimize its internal structure via laser after supersonic particle deposition(SPD).Owing to the high energy densi... A novel Ni_(30)Cr_(25)Al_(15)Co_(15)Mo_(5)Ti_(5)Y_(5) high-entropy alloy(HEA)coating was irradiated to optimize its internal structure via laser after supersonic particle deposition(SPD).Owing to the high energy density of the laser and large temperature gradient,the crystallization process of the molecules and atoms in the coating was restrained and supercooling occurred.Experimental results showed that a considerable number of nano-crystal grains precipitated and amorphous structures were formed because of the random orientation of the crystals.The baseline of differential scanning calorimetry scans obtained for the coating started to shift at the Tg of 939.37℃ and a step was observed.Multiple dispersion peaks and lattice fringes indicated that the nucleation of the irradiated laser-induced topology optimized(LTO)coating was incomplete.The laser-induced topology optimizing treatment led to quasi-isotropy in the SPD coating.Furthermore,the LTO coating exhibited a residual stress of 18.4 MPa,stress-strain response,and fatigue limit of 265 MPa.Hence,the LTO coating exhibited higher performance than the unirradiated SPD coating.The Nyquist and Bode electrochemical impedance spectra of the LTO coating,including two relaxation processes,indicated that the corrosion process steadily recovered to the equilibrium state.This implies that the uniform oxidation passivation layer on the surface of the LTO coating insulated the material from the corrosive medium,protecting the substrate from further corrosion,thus enhancing the structural security of the material for use in super-intense laser facility applications. 展开更多
关键词 ultrasonic atomization spin method(UASM) Laser-induced topology optimized(LTO) Amorphous nanostructure High-entropy alloy(HEA) Ab-initio molecular dynamics(AIMD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部