期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade 被引量:1
1
作者 Heng LUO Zhigang DONG +3 位作者 Renke KANG Yidan WANG Jiansong SUN Zhaocheng WEI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第1期147-162,共16页
When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.How... When ultrasonically cutting honeycomb core curved parts,the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface.However,given that the straight blade is a nonstandard tool,the existing computer-aided manufacturing technology cannot directly realize the above action requirement.To solve this problem,this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file,which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade.At the same time,for the multi-solution problem of the rotation axis,the dependent axis rotation minimization algorithm was introduced,and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part.Finally,on the basis of the MATLAB platform,the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled,and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed.The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software,and the simulation machining of the equivalent entity of the honeycomb core can then be realized.The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features.Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition,and the workpieces obtained by machining also meet the corresponding accuracy requirements.Therefore,the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites. 展开更多
关键词 honeycomb core straight blade ultrasonic cutting tool pose postprocessor
原文传递
Research on the Influence of Cutting Condition on the Surface Microstruct ure of Ultra-thin Wall Parts in Ultrasonic Vibration Cutting 被引量:9
2
作者 GAO Guo-fu, ZHAO Bo, JIAO Feng, LIU Chuan-shao (Department of Mechanical Engineering, Jiaozuo Institute of Technolog y, Henan 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期69-70,共2页
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras... In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce. 展开更多
关键词 ultra-thin wall parts ultrasonic cutting PCD t ool microstructure surface roughness
下载PDF
Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasonic cutting 被引量:1
3
作者 Yidan WANG Renke KANG +2 位作者 Yan QIN Qian MENG Zhigang DONG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2021年第2期285-297,共13页
Ultrasonic cutting with a disc cutter is an advanced machining method for the high-quality processing of Nomex honeycomb core.The machining quality is influenced by ultrasonic cutting parameters,as well as tool orient... Ultrasonic cutting with a disc cutter is an advanced machining method for the high-quality processing of Nomex honeycomb core.The machining quality is influenced by ultrasonic cutting parameters,as well as tool orientations,which are determined by the multi-axis machining requirements and the angle control of the cutting system.However,in existing research,the effect of the disc cutter orientation on the machining quality has not been studied in depth,and practical guidance for the use of disc cutters is lacking.In this work,the inclined ultrasonic cutting process with a disc cutter was analyzed,and cutting experiments with different inclination angles were conducted.The theoretical residual height models of the honeycomb core,as a result of the lead and tilt angles,were established and verified with the results obtained by a linear laser displacement sensor.Research shows that the residual height of the honeycomb core,as a result of the tilt angle,is much larger than that as a result of the lead angle.Furthermore,the tearing of the cell wall on the machined surface was observed,and the effects of the ultrasonic vibration,lead angle,and tilt angle on the tear rate and tear length of the cell wall were studied.Experimental results revealed that ultrasonic vibration can effectively decrease the tearing of the cell wall and improve the machining quality.Changes in the tilt angle have less effect than changes in the lead angle on the tearing of the cell wall.The determination of inclination angles should consider the actual processing requirements for the residual height and the machining quality of the cell wall.This study investigates the influence of the inclination angles of a disc cutter on the machining quality of Nomex honeycomb core in ultrasonic cutting and provides guidelines for machining. 展开更多
关键词 Nomex honeycomb core disc cutter inclined ultrasonic cutting machining quality
原文传递
On-line measurement of electrical variables of the transducer during ultrasonic welding and cutting
4
作者 闫久春 刘井权 杨士勤 《China Welding》 EI CAS 2002年第2期133-137,共5页
A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage... A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz . 展开更多
关键词 ultrasonic welding ultrasonic cutting on line measurement electrical variables
下载PDF
Ultrasonically Assisted Cutting of Histological Sections for Reducing the Environmental and Financial Impact of Microtomy
5
作者 Dong Wang Daniel De Becker Anish Roy 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期200-206,共7页
Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections ... Modern-day microtomy requires high precision equipment to thinly section biological tissues.The sectioned tissue must be of good quality not showing cutting tracks or so-called artefacts.The quality of these sections is dependent on the blade wear,which is related to the hardness of the tissue sample,cutting angle and cutting speed.A test rig has been designed and manufactured to allow these parameters to be controlled.This has allowed for the blade wear to be analysed and quantified,and this has been completed for both ultrasonically assisted and conventional cutting.The obtained results showed a 25.2%decrease in average blade roughness after 38 cuts when using the ultrasonically assisted cutting regime.The data also showed no adverse effect on the quality of the slides produced when using this cutting methodology.Finally,the cutting force measured for both cutting regimes showed that ultrasonically assisted cutting required less force compared to conventional cutting.With the reduction of surface roughness and force,it is possible to state that ultrasonically assisted cutting reduces the wear of the blade,thereby increasing the life of the blades.An increase of just 10%in blade life would yield a cost saving of approximately 25%thereby reducing the environmental and financial impact of microtomy. 展开更多
关键词 Microtome ultrasonically assisted cutting Blade wear
下载PDF
Research on Vibration Cutting Performance of Particle Reinforced Metallic Matrix Composites SiC_p/Al 被引量:1
6
作者 ZHAO Bo 1,2, LIU Chuan-shao 2, ZHU Xun-sheng 1, XU Ke-wei 1 (1. Institute of Mechanical Engineering, Shanghai Jiaotong U niversity, Shanghai 200030, China 2. Department of Mechanical Engineering, Jiaozuo Institute of Technology, Hena n 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期70-71,共2页
The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the p... The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole. 展开更多
关键词 PRMMCs ultrasonic vibration cutting chip deform ation chip shape
下载PDF
Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder 被引量:6
7
作者 Zhenlong PENG Deyuan ZHANG Xiangyu ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3535-3549,共15页
Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for the... Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC. 展开更多
关键词 High-speed machining Minimum chip thickness Mode-coupling Thin-walled cylinder ultrasonic vibration cutting
原文传递
Experimental Investigation and Numerical Simulation on Interfacial Carbon Diffusion of Diamond Tool and Ferrous Metals 被引量:3
8
作者 邹莱 ZHOU Ming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期307-314,共8页
We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and m... We numerically simulated and experimentally studied the interfacialcarbon diffusion between diamond tooland workpiece materials.A diffusion modelwith respect to carbon atoms of diamond toolpenetrating into chips and machined surface was established.The numericalsimulation results of the diffusion process revealthat the distribution laws of carbon atoms concentration have a close relationship with the diffusion distance,the diffusion time,and the originalcarbon concentration of the work material.In addition,diamond face cutting tests of die steels with different carbon content are conducted at different depth of cuts and feed rates to verify the previous simulation results.The micro-morphology of the chips is detected by scanning electron microscopy.Energy dispersive X-ray analysis was proposed to investigate the change in carbon content of the chips surface.The experimentalresults of this work are of benefit to a better understanding on the diffusion wear mechanism in single crystaldiamond cutting of ferrous metals.Moreover,the experimentalresults show that the diffusion wear of diamond could be reduced markedly by applying ultrasonic vibration to the cutting toolcompared with conventionalturning. 展开更多
关键词 diamond tool carbon diffusion numerical simulations ferrous metals ultrasonic vibration assisted cutting
下载PDF
Key machining characteristics in ultrasonic vibration cutting of single crystal silicon for micro grooves
9
作者 Jun-Yun Chen Tian-Ye Jin Xi-Chun Luo 《Advances in Manufacturing》 SCIE CAS CSCD 2019年第3期303-314,共12页
Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promis... Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promising method to achieve better cutting performance than conventional techniques.High-frequency ID UVC possesses higher nominal cutting speed and material removal rate than many 2D/3D UVC systems,and thus,it has great development potential in industrial applications of structured silicon components.However,few researchers have applied ID UVC to the cutting of structured silicon surfaces,since its main drawback is tool marks imprinted by the vibration on machined surface.In this study,to uncover the key machining characteristics under the condition of ID UVC,a series of tests involving diamond cutting grooves were first performed on the silicon surface.The machined surface and chips were subsequently measured and analyzed to evaluate the critical undeformed chip thickness,surface characteristics,and chip formation.Regarding the main drawback of ID UVC,a novel theoretical model was developed for predicting the length of tool marks and evaluating the impact of tool marks on the surface finish.The results demonstrated that the critical undeformed chip thickness of silicon reached 1030 nm under a certain vibration amplitude and that an array of micro grooves was generated at the plastic region with a surface roughness(7?a)as low as 1.11 nm.Moreover,the micro topography of the continuous chips exhibited discontinuous clusters of lines with diameters of dozens of nanometers,only composed of polysilicon.The novel theoretical model was able to predict the length of tool marks with low error.Thus,the impact of tool marks on the surface finish can be reduced and even eliminated with help of the model. 展开更多
关键词 ultrasonic vibration cutting(UVC) Single crystal SILICON Micro groove CHIP Tool vibration mark
原文传递
Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy
10
作者 Sen YIN Yan BAO +3 位作者 Yanan PAN Zhigang DONG Zhuji JIN Renke KANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第4期163-180,共18页
Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is deve... Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is developed to solve the precision machining problem of tungsten heavy alloy.A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed,and its design process is greatly simplified.The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes.A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus,which is verified by finite element method.The vibration unit can display different three-degree-of-freedom(3-DOF)UEVC characteristics by adjusting the corresponding position of the unit and workpiece.A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit,which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2μm.Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system,which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy. 展开更多
关键词 tungsten heavy alloy ultrasonic elliptical vibration cutting Timoshenko’s theory resonant mode of bending finite element method
原文传递
Ultrasonic vibration-assisted machining:principle,design and application 被引量:18
11
作者 Wei-Xing Xu Liang-Chi Zhang 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第3期173-192,共20页
Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make ... Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end. 展开更多
关键词 ultrasonic vibration-assisted (UVA) machining. cutting Metal alloys CERAMICS Composites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部