Crack detection in an aerospace turbine disk is essential for aircraft-quality detection.With the unique circular stepped structure and superalloy material properties of aerospace turbine disk,it is difficult for the ...Crack detection in an aerospace turbine disk is essential for aircraft-quality detection.With the unique circular stepped structure and superalloy material properties of aerospace turbine disk,it is difficult for the traditional ultrasonic testing method to perform efficient and accurate testing.In this study,ultrasound phased array detection technology was applied to the non-destructive testing of aviation turbine disks:(i)A phased array ultrasonic c-scan device for detecting aerospace turbine disk cracks(PAUDA)was developed which consists of phased array ultrasonic,transducers,a computer,a displacement encoder,and a rotating scanner;(ii)The influence of the detection parameters include frequency,wave-type,and elements number of the ultrasonic phased array probe on the detection results on the near-surface and the far surface of the aerospace turbine disk is analyzed;(iii)Specimens with flat-bottom-hole(FBH)defects were scanned by the developed PAUDA and the results were analyzed and compared with the conventional single probe ultrasonic water immersion testing.The experiment shows that by using the ultrasonic phased array c-scan to scan the turbine disk the accuracy of the detection can be significantly improved which is of greater accuracy and higher efficiency than traditional immersion testing.展开更多
This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive in...This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.展开更多
Fuzzy logic detection has been applied to the signal enhancement of ultrasonic flaw echoes from the structure noise due to nonflaw related scattering of ultrasound in highly scattering materials. Cross-correlation, ph...Fuzzy logic detection has been applied to the signal enhancement of ultrasonic flaw echoes from the structure noise due to nonflaw related scattering of ultrasound in highly scattering materials. Cross-correlation, phase difference and fractal dimension are used as signal characteristics in fuzzy logic detection. Experimental results show that this new method has better performance than the commonly used correlation detection.展开更多
A laser ultrasonics generation and non contact detection system has been developed. The weak generated ultrasonic signal of nanosecond duration and nanometer amplitude can be detected with a confocal Fabry Perot int...A laser ultrasonics generation and non contact detection system has been developed. The weak generated ultrasonic signal of nanosecond duration and nanometer amplitude can be detected with a confocal Fabry Perot interferometer (CFPI). It can be applied to determination of elastic constants of material and flaw detection. The experimental results show that laser ultrasonic technique is practical and effective.展开更多
基金This work was funded by the National Natural Science Foundation of China[Grant Nos.11664027,11374134]The National Natural Science Foundation of Jiangxi Province[Grant No.20161BAB216101]+1 种基金Key Laboratory of Non-Destructive Testing and Monitoring Technology for High-Speed Transport Facilities of the Ministry of Industry and Information Technology,Nanjing University of Aeronautics and AstronauticsThe Key Laboratory of Nondestructive Testing of Ministry of Education Nanchang Hang Kong University,Nanchang,China.
文摘Crack detection in an aerospace turbine disk is essential for aircraft-quality detection.With the unique circular stepped structure and superalloy material properties of aerospace turbine disk,it is difficult for the traditional ultrasonic testing method to perform efficient and accurate testing.In this study,ultrasound phased array detection technology was applied to the non-destructive testing of aviation turbine disks:(i)A phased array ultrasonic c-scan device for detecting aerospace turbine disk cracks(PAUDA)was developed which consists of phased array ultrasonic,transducers,a computer,a displacement encoder,and a rotating scanner;(ii)The influence of the detection parameters include frequency,wave-type,and elements number of the ultrasonic phased array probe on the detection results on the near-surface and the far surface of the aerospace turbine disk is analyzed;(iii)Specimens with flat-bottom-hole(FBH)defects were scanned by the developed PAUDA and the results were analyzed and compared with the conventional single probe ultrasonic water immersion testing.The experiment shows that by using the ultrasonic phased array c-scan to scan the turbine disk the accuracy of the detection can be significantly improved which is of greater accuracy and higher efficiency than traditional immersion testing.
文摘This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.
文摘Fuzzy logic detection has been applied to the signal enhancement of ultrasonic flaw echoes from the structure noise due to nonflaw related scattering of ultrasound in highly scattering materials. Cross-correlation, phase difference and fractal dimension are used as signal characteristics in fuzzy logic detection. Experimental results show that this new method has better performance than the commonly used correlation detection.
文摘A laser ultrasonics generation and non contact detection system has been developed. The weak generated ultrasonic signal of nanosecond duration and nanometer amplitude can be detected with a confocal Fabry Perot interferometer (CFPI). It can be applied to determination of elastic constants of material and flaw detection. The experimental results show that laser ultrasonic technique is practical and effective.