Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the resear...Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the research hotspots in the field of non-destructive testing(NDT)and widely used for testing long distance pipelines.This paper presents the development of MFL tesing technology from the aspects of basic theory,influencing factors,magnetization technology,signal processing,etc.The problems to be solved and the future development are summarized,which can provide reference for the research and system development of MFL testing technology.展开更多
Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable...Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.展开更多
The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses re...The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity.展开更多
This paper proposes a new search strategy using mutative scale chaos optimization algorithm (MSCO) for model selection of support vector machine (SVM). It searches the parameter space of SVM with a very high effic...This paper proposes a new search strategy using mutative scale chaos optimization algorithm (MSCO) for model selection of support vector machine (SVM). It searches the parameter space of SVM with a very high efficiency and finds the optimum parameter setting for a practical classification problem with very low time cost. To demonstrate the performance of the proposed method it is applied to model selection of SVM in ultrasonic flaw classification and compared with grid search for model selection. Experimental results show that MSCO is a very powerful tool for model selection of SVM, and outperforms grid search in search speed and precision in ultrasonic flaw classification.展开更多
WSNs (wireless sensor networks) can be used for railway infrastructure inspection and vehicle health monitoring. SHM (structural health monitoring) systems have a great potential to improve regular operation, secu...WSNs (wireless sensor networks) can be used for railway infrastructure inspection and vehicle health monitoring. SHM (structural health monitoring) systems have a great potential to improve regular operation, security and maintenance routine of structures with estimating the state of its health and detecting the changes that affect its performance. This is vital for the development, upgrading, and expansion of railway networks. The work presented in this paper aims at the possible use of acoustic sensors coupled with ZigBee modules for health monitoring of rails. The detection principle is based on acoustic noise correlation techniques. Experiments have been performed in a rail sample to confirm the validity of acoustic noise correlation techniques in the rail. A wireless communication platform prototype based on the ZigBee/IEEE 802.15.4 technology has been implemented and deployed on a rail sample. Once the signals from the structure are collected, sensor data are transmitted through a ZigBee solution to the processing unit.展开更多
基金National Natural Science Foundation of China(No.51804267)Applied Basic Research Project of Sichuan Province(No.2017JY0162)。
文摘Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the research hotspots in the field of non-destructive testing(NDT)and widely used for testing long distance pipelines.This paper presents the development of MFL tesing technology from the aspects of basic theory,influencing factors,magnetization technology,signal processing,etc.The problems to be solved and the future development are summarized,which can provide reference for the research and system development of MFL testing technology.
基金the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this researchsupported by EPSRC grant EP/R002495/1the European Metrology Research Programme through grant 17IND08。
文摘Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.
文摘由于超声回波信号受到噪声干扰或者到达时间混叠,故超声无损检测信号很难鉴别缺陷的大小.文中提出一种新的超声回波信号到达时间的识别方法.该方法首先把原始采集的回波信号进行经验模态分解,得到若干个固有模态函数,通过确定能量临界值,选择几个固有模态函数重构信号,重构信号的峰值包络表明了各个回波信号的到达时间.由衍射时差法(TOFD)实验信号验证了该方法的可行性及准确性.实验结果表明,可以识别的最小时间间隔为0.1μs,平均误差为80 ns.
文摘The work presented in this paper aims at investigating the ability of acoustic noise correlation technique for railway infrastructure health monitoring. The principle of this technique is based on impulse responses reconstruction by correlation of random noise propagated in the medium. Since wheel-rail interaction constitutes a source of such noise, correlation technique could be convenient for detection of rail defects using only passive sensors. Experiments have been carried out on a 2 m-long rail sample. Acoustic noise is generated in the sample at several positions. Direct comparison between an active emission-reception response and the estimated noise correlation function has confirmed the validity of the equivalence relation between them. The quality of the reconstruction is shown to be strongly related to the spatial distribution of the noise sources. High sensitivity of the noise-correlation functions to a local defect on the rail is also demonstrated. However, interpretation of the defect signature is more ambiguous than when using classical active responses. Application of a spatiotemporal Fourier transform on data recorded with variable sensor-defect distances has allowed overcoming this ambiguity.
基金Project supported by National High-Technology Research and De-velopment Program of China (Grant No .863-2001AA602021)
文摘This paper proposes a new search strategy using mutative scale chaos optimization algorithm (MSCO) for model selection of support vector machine (SVM). It searches the parameter space of SVM with a very high efficiency and finds the optimum parameter setting for a practical classification problem with very low time cost. To demonstrate the performance of the proposed method it is applied to model selection of SVM in ultrasonic flaw classification and compared with grid search for model selection. Experimental results show that MSCO is a very powerful tool for model selection of SVM, and outperforms grid search in search speed and precision in ultrasonic flaw classification.
文摘WSNs (wireless sensor networks) can be used for railway infrastructure inspection and vehicle health monitoring. SHM (structural health monitoring) systems have a great potential to improve regular operation, security and maintenance routine of structures with estimating the state of its health and detecting the changes that affect its performance. This is vital for the development, upgrading, and expansion of railway networks. The work presented in this paper aims at the possible use of acoustic sensors coupled with ZigBee modules for health monitoring of rails. The detection principle is based on acoustic noise correlation techniques. Experiments have been performed in a rail sample to confirm the validity of acoustic noise correlation techniques in the rail. A wireless communication platform prototype based on the ZigBee/IEEE 802.15.4 technology has been implemented and deployed on a rail sample. Once the signals from the structure are collected, sensor data are transmitted through a ZigBee solution to the processing unit.