On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness...On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.展开更多
The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear a...The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.展开更多
To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient...To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave(LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.展开更多
Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-co...Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-consuming data acquisition and processing.In order to solve the problem,two simplified matrix focusing methods are provided in the paper.One provided method is a triangular matrix focusing algorithm based on the principle of reciprocity for the multi-channel ultrasonic system.The other provided method is a trapezoidal matrix focusing algorithm based on the energy weight of the different channel to the focusing area.Time of data acquisition and computational is decreased with the provided simplified matrix focusing methods.In order to prove the validity of two provided algorithms,both side-drilled holes and oblique cracks are used for imaging experiments.The experimental results show that the imaging quality of the triangular matrix focusing algorithm is basically consistent to that of the full matrix focusing method.And imaging quality of the trapezoidal matrix focusing algorithm is slightly reduced with the amount of multi-channel data decreasing.Both data acquisition and computational efficiency using the triangular matrix focusing algorithm and the trapezoidal matrix focusing algorithm have been improved significantly compared with original full matrix focusing method.展开更多
Based on quantitative microscopic examinations of welds and welding rate for different steels(40Cr and T10A) joint,which possess the ultra-fine microstructure after high frequency hardening(HFH) and salt-bath cyclic q...Based on quantitative microscopic examinations of welds and welding rate for different steels(40Cr and T10A) joint,which possess the ultra-fine microstructure after high frequency hardening(HFH) and salt-bath cyclic quenching(SCQ),the suitable defect grey scale threshold value was determined,and the welding rate of superplastic solid-state welding of different steels(40Cr and T10 A steel) was systematically inspected and analyzed by means of self-made ultrasonic imaging inspection system.The experimental results showed that the superplastic solid-state weld of different steels can be inspected more accurately,reliably and quickly by this system,and the results were in good accordance with that of metallographic observation.The welding rate of superplastic welding is in linear relation with tensile strength of joint.展开更多
This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water trea...This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water treatment. A specially designed acoustic sensor with a frequency of 2.5 MHz was used. The hollow fiber membranes used were polysulphone(PSf) UF membranes with MWCO 40 kDa. The wastewaters with three different oily concentrations of 100, 500 and 1 000 mg/L were investigated. Diesel oil was utilized as the primary foulant. The results show that the permeate flux declines with operation time and its value becomes lower with the increase of the oily concentration in wastewater. It is found that ultrasonic measurement can detect the fouling and cleaning processes. A new signal analysis protocol-ultrasonic reflected energy was developed. Ultrasonic reflected energy obtained indicates the deposition of oily layer as a function of operation time and its removal after cleaning. The overall flux decline is reasonably correlated with the changes in ultrasonic reflected energy. This research provides the evidence that the ultrasonic reflectometry technique is capable of monitoring membrane fouling and cleaning in hollow fiber modules.展开更多
Miners working in the marble industry have always been interested in identifying structural weaknesses in marble blocks before they are transported to marble processing plants. To achieve this difficult task, several ...Miners working in the marble industry have always been interested in identifying structural weaknesses in marble blocks before they are transported to marble processing plants. To achieve this difficult task, several simple methods have been developed among miners but observation-based methods do not consistently provide satisfactory results. A nondestructive method developed for testing concrete could be used for this purpose. In this study, this simple method based on differences in ultrasonic wave propagation in different materials was presented, and the test results performed both in the laboratory and a marble quarry were discussed.展开更多
The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealcul...The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealculate the elastic wave velocity values in the section using the arrival times. Through analyzed the distribution Of elastic wave velocity in aim area, the information of the strength and the homogeneity of the investigated zone could be got indirectly. The authors introduced the operational principle of USCT and a practical case of using this method to detect the interior defects in large scale concrete structural member. Compared with other exploration methods, this method is more efficient and accurate.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51805141)Funds for Creative Research Groups of Hebei Province of China(Grant No.E2020202142)+2 种基金Tianjin Municipal Science and Technology Plan Project of China(Grant No.19ZXZNGX00100)Key R&D Program of Hebei Province of China(Grant No.19227208D)National Key Research and development Program of China(Grant No.2020YFB2009400).
文摘On-site and real-time non-destructive measurement of elastic constants for materials of a component in a in-service structure is a challenge due to structural complexities,such as ambiguous boundary,variable thickness,nonuniform material properties.This work develops for the first time a method that uses ultrasound echo groups and artificial neural network(ANN)for reliable on-site real-time identification of material parameters.The use of echo groups allows the use of lower frequencies,and hence more accommodative to structural complexity.To train the ANNs,a numerical model is established that is capable of computing the waveform of ultrasonic echo groups for any given set of material properties of a given structure.The waveform of an ultrasonic echo groups at an interest location on the surface the structure with material parameters varying in a predefined range are then computed using the numerical model.This results in a set of dataset for training the ANN model.Once the ANN is trained,the material parameters can be identified simultaneously using the actual measured echo waveform as input to the ANN.Intensive tests have been conducted both numerically and experimentally to evaluate the effectiveness and accuracy of the currently proposed method.The results show that the maximum identification error of numerical example is less than 2%,and the maximum identification error of experimental test is less than 7%.Compared with currently prevailing methods and equipment,the proposefy the density and thickness,in addition to the elastic constants.Moreover,the reliability and accuracy of inverse prediction is significantly improved.Thus,it has broad applications and enables real-time field measurements,which has not been fulfilled by any other available methods or equipment.
基金supported by the Na⁃tional Natural Science Foundation of China(No.11972016)the Natural Science Foundation of the Jiangsu Higher Educa⁃tion Institutions of China(No.23KJD460005)Scientif⁃ic Research Foundation for the Introduction of Talent in Nan⁃jing Vocational University of Industry Technology(No.YK21-04-02).
文摘The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.
基金Supported by National Natural Science Foundation of China(Grant No.51275042)
文摘To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave(LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.
基金Supported by the National Natural Science Foundation of China(Grant No.51905070).
文摘Full matrix focusing method of ultrasonic phased array has been proved with advantages of good signal-to-noise ratio and imaging resolution in the field of Ultrasonic NDT.However,it is still suffering from the time-consuming data acquisition and processing.In order to solve the problem,two simplified matrix focusing methods are provided in the paper.One provided method is a triangular matrix focusing algorithm based on the principle of reciprocity for the multi-channel ultrasonic system.The other provided method is a trapezoidal matrix focusing algorithm based on the energy weight of the different channel to the focusing area.Time of data acquisition and computational is decreased with the provided simplified matrix focusing methods.In order to prove the validity of two provided algorithms,both side-drilled holes and oblique cracks are used for imaging experiments.The experimental results show that the imaging quality of the triangular matrix focusing algorithm is basically consistent to that of the full matrix focusing method.And imaging quality of the trapezoidal matrix focusing algorithm is slightly reduced with the amount of multi-channel data decreasing.Both data acquisition and computational efficiency using the triangular matrix focusing algorithm and the trapezoidal matrix focusing algorithm have been improved significantly compared with original full matrix focusing method.
基金Item Sponsored by Provincial Natural Science Foundation of Henan(984040900)State Key Laboratory of Laser Technology([2001]0110)
文摘Based on quantitative microscopic examinations of welds and welding rate for different steels(40Cr and T10A) joint,which possess the ultra-fine microstructure after high frequency hardening(HFH) and salt-bath cyclic quenching(SCQ),the suitable defect grey scale threshold value was determined,and the welding rate of superplastic solid-state welding of different steels(40Cr and T10 A steel) was systematically inspected and analyzed by means of self-made ultrasonic imaging inspection system.The experimental results showed that the superplastic solid-state weld of different steels can be inspected more accurately,reliably and quickly by this system,and the results were in good accordance with that of metallographic observation.The welding rate of superplastic welding is in linear relation with tensile strength of joint.
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China Projects(043612611, 05YFGDGX10000) supported by the Natural Science Foundation and Development Program of Science and Technology of Tianjin, China
文摘This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water treatment. A specially designed acoustic sensor with a frequency of 2.5 MHz was used. The hollow fiber membranes used were polysulphone(PSf) UF membranes with MWCO 40 kDa. The wastewaters with three different oily concentrations of 100, 500 and 1 000 mg/L were investigated. Diesel oil was utilized as the primary foulant. The results show that the permeate flux declines with operation time and its value becomes lower with the increase of the oily concentration in wastewater. It is found that ultrasonic measurement can detect the fouling and cleaning processes. A new signal analysis protocol-ultrasonic reflected energy was developed. Ultrasonic reflected energy obtained indicates the deposition of oily layer as a function of operation time and its removal after cleaning. The overall flux decline is reasonably correlated with the changes in ultrasonic reflected energy. This research provides the evidence that the ultrasonic reflectometry technique is capable of monitoring membrane fouling and cleaning in hollow fiber modules.
文摘Miners working in the marble industry have always been interested in identifying structural weaknesses in marble blocks before they are transported to marble processing plants. To achieve this difficult task, several simple methods have been developed among miners but observation-based methods do not consistently provide satisfactory results. A nondestructive method developed for testing concrete could be used for this purpose. In this study, this simple method based on differences in ultrasonic wave propagation in different materials was presented, and the test results performed both in the laboratory and a marble quarry were discussed.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2007AA06Z215)
文摘The ultrasonic computed tomography (USCT) method is derived from the basic principles of X-ray section scanning. This method records the arriving times of ultrasonic wave between the probes and the sources to ealculate the elastic wave velocity values in the section using the arrival times. Through analyzed the distribution Of elastic wave velocity in aim area, the information of the strength and the homogeneity of the investigated zone could be got indirectly. The authors introduced the operational principle of USCT and a practical case of using this method to detect the interior defects in large scale concrete structural member. Compared with other exploration methods, this method is more efficient and accurate.