The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, thei...The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to dθ21 (f)/df, whereθ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.展开更多
文摘The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to dθ21 (f)/df, whereθ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.