The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, a...Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).展开更多
Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio...Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.展开更多
In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener fi...In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.展开更多
Separating noise from observed signals was studied.When the small defect in the T-shape laser welding joint was inspected by ultrasonic testing system adopting independent component analysis(ICA) theory to process the...Separating noise from observed signals was studied.When the small defect in the T-shape laser welding joint was inspected by ultrasonic testing system adopting independent component analysis(ICA) theory to process the signals.The principle of automatic ultrasonic testing signals processing and negentropy law of ICA were introduced.The experimental data were processed using relative analysis tools and results showed that the ICA could separate defects signals from noise effectively in laboratory.展开更多
Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal samplin...Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method.展开更多
The ambiguity function (AF) is proposed to represent the ultrasonic signal for its modulus’ independence of time shift and frequency shift, which avoids the effect of center frequency and arriving time of the ultraso...The ambiguity function (AF) is proposed to represent the ultrasonic signal for its modulus’ independence of time shift and frequency shift, which avoids the effect of center frequency and arriving time of the ultrasonic signal on feature extraction. Moreover, the K-L transform is considered to extract features from the ambiguity plane, and the effect of signals to noises on validity of ambiguity features is analyzed. Furthermore, we discuss the performance of recognizing ultrasonic signals at different center frequencies and different arriving time based on ambiguity features. Experimental results show that the features extracted by the K-L transform (KLT) are immune to noises, and can recognize ultrasonic signals effectively in a lower dimensional space.展开更多
To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse samplin...To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented.Differences between the pulse and the coded ultrasonic signal are analyzed,and a response mathematical model of the coded ultrasonic signal is established.A time-domain transform algorithm,called the high-order moment method,is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling.A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel.FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample.Experimental results show that the sampling rate reduces to 0.5 MHz,which is at least 12.8 MHz in the Nyquist sampling mode.The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324%and 0.031%,respectively.This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of t...this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD) instrument and an in vivo application for neonatal bone eval...Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD) instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non- ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females) at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (-/-1) and duration (7-2) of the backscatter signal of interest (SOl) were varied, and the apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), zero frequency intercept of apparent backscatter (FIAB), and spectral centroid shift (SCS) were calculated. The results showed that the SOl selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P 〈 0.001) when -/-1 was short (〈 8 μS), while negative correlations (|R| up to 0.56, P 〈 0.001) were commonly observed for T1 〉 10 IJS. Moderate positive correlations (IRI up to 0.45, P 〈 0.001) were observed for FSAB and SCS with gestational age when 71 was long (〉 10 μs). The 7-2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOl selection and neonatal cancellous bone assessment.展开更多
The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynami...The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane(LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group(n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method(4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume(P〈0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated(P〈0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group(P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group(P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group(P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant(P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group(P=0.031). The a RVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group(P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.展开更多
In this paper the system for simulation, measurement and processing in graphical user interface implementa- tion is presented. The received signal from the simulation is compared to that of an actual measurement in th...In this paper the system for simulation, measurement and processing in graphical user interface implementa- tion is presented. The received signal from the simulation is compared to that of an actual measurement in the time domain. The comparison of simulated, experimental data clearly shows that acoustic wave propaga- tion can be modeled. The feasibility has been demonstrated in an ultrasound transducer setup for material property investigations. The results of simulation are compared to experimental measurements. Results ob- tained fit some much with those found in experiment and show the validity of the used model. The simula- tion tool therefore provides a way to predict the received signal before anything is built. Furthermore, the use of an ultrasonic simulation package allows for the development of the associated electronics to amplify and process the received ultrasonic signals. Such a virtual design and testing procedure not only can save us time and money, but also provide better understanding on design failures and allow us to modify designs more efficiently and economically.展开更多
Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real ti...Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.展开更多
The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved v...The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale.展开更多
The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The...The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.展开更多
The feasibility of gas kick early detection outside the riser was analyzed based on gas-liquid multiphase flow theory.Then an experimental platform for gas kick early detection based on Doppler ultrasonic wave was est...The feasibility of gas kick early detection outside the riser was analyzed based on gas-liquid multiphase flow theory.Then an experimental platform for gas kick early detection based on Doppler ultrasonic wave was established and the propagation experiments in two-phase flow of gas-water(sucrose solutions)were conducted.The time and frequency domains of the Doppler ultrasonic wave signals during the experiments were analyzed.The results show that:(1)No matter the pump was on or off,the detected average Doppler ultrasonic signal voltage increased first and then decreased with the increase of the gas void fraction,and had a quadratic function relation with gas void fraction,so the average voltage change of the monitored signals can be used to deduce the approximate gas void fraction.The Doppler ultrasonic wave signal voltage was significantly reduced in magnitude and variation in the solution with higher viscosity,and the viscosity has stronger impact on the magnitude of signal than density.(2)When the pump was stopped,the Doppler shift increased with the increase of gas void fraction,and the two showed a nearly linear relation,so the detected amount of Doppler shift can reflect the variation of gas void fraction quantitatively.When the pump was on,the sound energy produced by frequency converter had a more significant impact on amplitude spectrum than gas void fraction,so it is impossible to determine whether gas kick occurs by frequency domain signal analysis.(3)This method is a non-contact measurement,with no contact with the drilling fluid and no disruption to the drilling operation.It can quantitatively characterize the gas void fraction according to the change of Doppler ultrasonic signal,enabling earlier detection of gas kick.展开更多
Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visu...Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
文摘Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61427802,31727901,61625103,61501032,61471038the Chang Jiang Scholars Program(T2012122)+1 种基金part by the 111 project of China under Grant B14010supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
文摘Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.
基金Project (No. PRC 03-41/2003) supported by the Ministry of Con-struction of Cuba
文摘In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.
文摘Separating noise from observed signals was studied.When the small defect in the T-shape laser welding joint was inspected by ultrasonic testing system adopting independent component analysis(ICA) theory to process the signals.The principle of automatic ultrasonic testing signals processing and negentropy law of ICA were introduced.The experimental data were processed using relative analysis tools and results showed that the ICA could separate defects signals from noise effectively in laboratory.
基金Supported by the National Natural Science Foundation of China(Grant No.51375217)
文摘Finite rate of innovation sampling is a novel sub-Nyquist sampling method that can reconstruct a signal from sparse sampling data.The application of this method in ultrasonic testing greatly reduces the signal sampling rate and the quantity of sampling data.However,the pulse number of the signal must be known beforehand for the signal reconstruction procedure.The accuracy of this prior information directly affects the accuracy of the estimated parameters of the signal and influences the assessment of flaws,leading to a lower defect detection ratio.Although the pulse number can be pre-given by theoretical analysis,the process is still unable to assess actual complex random orientation defects.Therefore,this paper proposes a new method that uses singular value decomposition(SVD) for estimating the pulse number from sparse sampling data and avoids the shortcoming of providing the pulse number in advance for signal reconstruction.When the sparse sampling data have been acquired from the ultrasonic signal,these data are transformed to discrete Fourier coefficients.A Hankel matrix is then constructed from these coefficients,and SVD is performed on the matrix.The decomposition coefficients reserve the information of the pulse number.When the decomposition coefficients generated by noise according to noise level are removed,the number of the remaining decomposition coefficients is the signal pulse number.The feasibility of the proposed method was verified through simulation experiments.The applicability was tested in ultrasonic experiments by using sample flawed pipelines.Results from simulations and real experiments demonstrated the efficiency of this method.
文摘The ambiguity function (AF) is proposed to represent the ultrasonic signal for its modulus’ independence of time shift and frequency shift, which avoids the effect of center frequency and arriving time of the ultrasonic signal on feature extraction. Moreover, the K-L transform is considered to extract features from the ambiguity plane, and the effect of signals to noises on validity of ambiguity features is analyzed. Furthermore, we discuss the performance of recognizing ultrasonic signals at different center frequencies and different arriving time based on ambiguity features. Experimental results show that the features extracted by the K-L transform (KLT) are immune to noises, and can recognize ultrasonic signals effectively in a lower dimensional space.
基金The National Natural Science Foundation of China (No.51375217)。
文摘To achieve sparse sampling on a coded ultrasonic signal,the finite rate of innovation(FRI)sparse sampling technique is proposed on a binary frequency-coded(BFC)ultrasonic signal.A framework of FRI-based sparse sampling for an ultrasonic signal pulse is presented.Differences between the pulse and the coded ultrasonic signal are analyzed,and a response mathematical model of the coded ultrasonic signal is established.A time-domain transform algorithm,called the high-order moment method,is applied to obtain a pulse stream signal to assist BFC ultrasonic signal sparse sampling.A sampling of the output signal with a uniform interval is then performed after modulating the pulse stream signal by a sampling kernel.FRI-based sparse sampling is performed using a self-made circuit on an aluminum alloy sample.Experimental results show that the sampling rate reduces to 0.5 MHz,which is at least 12.8 MHz in the Nyquist sampling mode.The echo peak amplitude and the time of flight are estimated from the sparse sampling data with maximum errors of 9.324%and 0.031%,respectively.This research can provide a theoretical basis and practical application reference for reducing the sampling rate and data volume in coded ultrasonic testing.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘this paper develops a real-time traffic signal timing model which is to be integrated into a single intersection for urban road, thereby solving the problem of traffic congestion. We analyze the current situation of the traffic flow with release matrix firstly, and then put forward the basic models to minimize total delay time of vehicles at the intersection. The optimal real-time signal timing model (non-fixed cycle and non-fixed split) is built with the Webster split optimal model. At last, the simulated results, which are compared with conventional model, manifest the promising properties of proposed model.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
基金supported by the National Natural Science Foundation of China (11174060, 11327405, and 11504057)the Science and Technology Support Program of Shanghai (13441901900)+1 种基金the PhD Programs Foundation of the Ministry of Education of China (20130071110020)the China Postdoctoral Science Foundation (2015M571490)
文摘Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD) instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non- ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females) at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (-/-1) and duration (7-2) of the backscatter signal of interest (SOl) were varied, and the apparent integrated backscatter (AIB), frequency slope of apparent backscatter (FSAB), zero frequency intercept of apparent backscatter (FIAB), and spectral centroid shift (SCS) were calculated. The results showed that the SOl selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P 〈 0.001) when -/-1 was short (〈 8 μS), while negative correlations (|R| up to 0.56, P 〈 0.001) were commonly observed for T1 〉 10 IJS. Moderate positive correlations (IRI up to 0.45, P 〈 0.001) were observed for FSAB and SCS with gestational age when 71 was long (〉 10 μs). The 7-2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOl selection and neonatal cancellous bone assessment.
文摘The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane(LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group(n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method(4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume(P〈0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated(P〈0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group(P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group(P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group(P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant(P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group(P=0.031). The a RVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group(P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.
文摘In this paper the system for simulation, measurement and processing in graphical user interface implementa- tion is presented. The received signal from the simulation is compared to that of an actual measurement in the time domain. The comparison of simulated, experimental data clearly shows that acoustic wave propaga- tion can be modeled. The feasibility has been demonstrated in an ultrasound transducer setup for material property investigations. The results of simulation are compared to experimental measurements. Results ob- tained fit some much with those found in experiment and show the validity of the used model. The simula- tion tool therefore provides a way to predict the received signal before anything is built. Furthermore, the use of an ultrasonic simulation package allows for the development of the associated electronics to amplify and process the received ultrasonic signals. Such a virtual design and testing procedure not only can save us time and money, but also provide better understanding on design failures and allow us to modify designs more efficiently and economically.
基金supported by the National Key Technology Research and Development Program of China(863 Program, Grant No.2009BAG18B03)
文摘Monitoring the thickness changes of channel siltation is paramount in safeguarding navigation and guiding dredging, This paper presents a novel method for realizing the field monitoring of channel siltation in real time. The method is based on the bistatic scattering theory and concerned more with the receiving and processing of multipath signal at high-frequency and small grazing angle. By use of the multipath propagation structure of underwater acoustic channel, the method obtains the silt thickness by calculating the relative time delay of acoustic signals between the direct and the shortest bottom reflected paths. Bistatic transducer pairs are employed to transmit and receive the acoustic signals, and the GPS time synchronization technology is introduced to synchronize the transmitter and receiver, The WRELAX (Weighted Fourier transforul and RELAX) algorithm is used to obtain the high resolution estimation of muhipath time delay. To examine the feasibility of the presented method and the accuracy and precision of the developed system, a series of sea trials are conducted in the southwest coast area of Dalian City, north of the Yellow Sea. The experimental results are compared with that using high-resolution dual echo sounder HydroBoxTM, and the uncertainty is smaller than + 0.06 m. Compared with the existing means for measuring the silt thickness, the present method is innovative, and the system is stable, efficient and provides a better real-time performance. It especially suits monitoring the narrow channel with rapid changes of siltation.
文摘The ultrasonic echo in liquid density measurement often suffers noise,which makes it difficult to obtain the useful echo waveform,resulting in low accuracy of density measurement.A denoising method based on improved variational mode decomposition(VMD)for noise echo signals is proposed.The number of decomposition layers of the traditional VMD is hard to determine,therefore,the center frequency similarity factor is firstly constructed and used as the judgment criterion to select the number of VMD decomposition layers adaptively;Secondly,VMD algorithm is used to decompose the echo signal into several modal components with a single modal component,and the useful echo components are extracted based on the features of the ultrasonic emission signal;Finally,the liquid density is calculated by extracting the amplitude and time of the echo from the modal components.The simulation results show that using the improved VMD to decompose the echo signal not only can improve the signal-to-noise ratio of the echo signal to 20.64 dB,but also can accurately obtain the echo information such as time and amplitude.Compared with the ensemble empirical mode decomposition(EEMD),this method effectively suppresses the modal aliasing,keeps the details of the signal to the maximum extent while suppressing noise,and improves the accuracy of the liquid density measurement.The density measurement accuracy can reach 0.21%of full scale.
基金Supported by the National Natural Science Foundation of China(10772029)
文摘The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.
基金Supported by Natural Science Foundation of China(51991363)National Program on Key Basic Research Project(973 Program)(2015CB251200)Changjiang Scholars and Innovative Research Team Project(IRT_14R58)
文摘The feasibility of gas kick early detection outside the riser was analyzed based on gas-liquid multiphase flow theory.Then an experimental platform for gas kick early detection based on Doppler ultrasonic wave was established and the propagation experiments in two-phase flow of gas-water(sucrose solutions)were conducted.The time and frequency domains of the Doppler ultrasonic wave signals during the experiments were analyzed.The results show that:(1)No matter the pump was on or off,the detected average Doppler ultrasonic signal voltage increased first and then decreased with the increase of the gas void fraction,and had a quadratic function relation with gas void fraction,so the average voltage change of the monitored signals can be used to deduce the approximate gas void fraction.The Doppler ultrasonic wave signal voltage was significantly reduced in magnitude and variation in the solution with higher viscosity,and the viscosity has stronger impact on the magnitude of signal than density.(2)When the pump was stopped,the Doppler shift increased with the increase of gas void fraction,and the two showed a nearly linear relation,so the detected amount of Doppler shift can reflect the variation of gas void fraction quantitatively.When the pump was on,the sound energy produced by frequency converter had a more significant impact on amplitude spectrum than gas void fraction,so it is impossible to determine whether gas kick occurs by frequency domain signal analysis.(3)This method is a non-contact measurement,with no contact with the drilling fluid and no disruption to the drilling operation.It can quantitatively characterize the gas void fraction according to the change of Doppler ultrasonic signal,enabling earlier detection of gas kick.
文摘Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.