Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea...In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.展开更多
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi...Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.展开更多
The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing...The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.展开更多
Ultrasonic vibration was introduced into the Mg-8Li-3A1 alloy melt during its solidification process. The microstructure, corrosion resistance and mechanical properties of the Mg-8Li-3A1 alloy under ultrasonic vibrati...Ultrasonic vibration was introduced into the Mg-8Li-3A1 alloy melt during its solidification process. The microstructure, corrosion resistance and mechanical properties of the Mg-8Li-3A1 alloy under ultrasonic vibration were investigated. The experiment results show that the morphology of a phase is modified from coarse rosette-like structure to fine globular one with the application of ultrasonic vibration. The fine globular structure is obtained especially when the power is 170 W, and the refining effect also gets better with prolonging the ultrasonic treatment time. The corrosion resistance of the alloy with 170 W of ultrasonic vibration for 90 s is improved apparently compared with the alloy without ultrasonic vibration. The mechanical properties of alloys with ultrasonic vibration are also both improved apparently. The tensile strength and elongation of alloy improve by 9.5% and 45.7%, respectively, with 170 W of ultrasonic treatment for 90 s.展开更多
The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature...The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.展开更多
To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found...To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.展开更多
A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigat...A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigated. Besides the microstructures of primary Si particles and α(Al)+β-Si eutectic phases, non-equilibrium α(Al) particles or dendrites are discovered in the microstructure of the Al-20Si-2Cu-0.4Mg-1Ni alloy. Rapid cooling generated by squeeze casting process rather than the pressure is considered as the main reason for the formation of non-equilibrium α(Al) phase. The sound pressurizing effect of ultrasonic vibration also enables the non-equilibrium α(Al) phases to form above eutectic temperature and grow into non-dendritic spheroids in the process of semi-solid slurry preparation. Non-equilibrium α(Al) phases formed in the hypereutectic Al-Si alloy with ultrasonic vibration treatment, consist of round α(Al) grains formed above the eutectic temperature and a small amount of fine α(Al) dendrites formed under the eutectic temperature. The volume fraction of primary Si particles is decreased significantly by the effect of ultrasonic vibration through increasing the solid solubility of Si atoms in α(Al) matrix and decreasing the forming temperature range of primary Si particles. The average particle diameter and the volume fraction of primary Si particles in microstructure of the swash-plate by rheo-squeeze casting are 24.3 μm and 11.1%, respectively.展开更多
Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic ...Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".展开更多
The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high press...The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.展开更多
In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect ...In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect of ultrasonic output power were studied using ammonium chloride. Finally, the mechanism of grain refinement was investigated. The results show that: (1) By applying the UV to aluminum-base alloy, the grain refining rate of ingots tended to increase with the increase of the output value of UV. (2) It was confirmed that time from after the pour to the beginning of crystallization as well as cloudiness tended to decrease with increasing the ultrasonic power value of UV. Moreover, it can be seen from each cooling curve that a uniform temperature gradient existed in the melt as the power of UV increased, that made the melt strongly stirred. (3) It was also considered that the grain refining effect of ingots, which was observed from the simulation tests, resulted from nucleation action and stirring division action by applying the UV.展开更多
Compared with conventional forming processes,ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials.Owing to the advantages of reduc...Compared with conventional forming processes,ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials.Owing to the advantages of reduced forming force,improved surface quality,avoidance of forming defects,and strengthened surface structure,ultrasonic-assisted forming technology has been applied to increasingly advanced forming processes,such as incremental forming,spinning,and micro-forming.However,in the ultrasonic-assisted forming process,there are multiple ultrasonic mechanisms,such as the volume effect and surface effect.The explanation of the effect of ultrasonic vibration(UV)on plastic deformation remains controversial,hindering the development of related technologies.Recently,many researchers have proposed many new theories and technologies for ultrasonic-assisted forming.To summarize these developments,systematic discussions on mechanisms,theoretical models,and forming performances are provided in this review.On this basis,the limitations of the current study are discussed.In addition,an outlook for ultrasonic-assisted forming is proposed:efficient and stable UV systems,difficulty forming components with complex geometry,explanation of the in-depth mechanism,a systematic theoretical prediction model,and multi-field-coupling energy-assisted forming are considered to be hot spots in future studies.The present review enhances existing knowledge of ultrasonic-assisted forming,and facilitates a fast reference for related researchers.展开更多
Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultr...Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results.展开更多
Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried ou...Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy.展开更多
Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By direct...Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By directly imposed ultrasonic vibration on welding arc, the vibration interacts with arc plasma and passes to the weld pool. Measurement results show that arc pressure is significantly increased with the ultrasonic vibration and the arc pressure distribution models are changed. Bead-on-plate welding tests on SUS304 confirm that this technology can influence the style of metal melting and increase weld penetration depth.展开更多
The research studied the combined effects of ultrasonic vibration (USV) and manganese on the Fe-containing inter-metallic compounds and mechanical properties of AI-17Si-3Fe-2Cu-1Ni (wt.%) alloys. The results showe...The research studied the combined effects of ultrasonic vibration (USV) and manganese on the Fe-containing inter-metallic compounds and mechanical properties of AI-17Si-3Fe-2Cu-1Ni (wt.%) alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-AI4(Fe,Mn)Si2 phase and long needle-like β-A15(Fe,Mn)Si phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-AI5(Fe,Mn)Si phase decrease and the plate-like δ-A14(Fe,Mn)Si2 phase becomes much coarser. After USV treatment, the Fe- containing compounds in the alloys are refined and exist mainly as δ-AI4(Fe,Mn)Si2 particles with an average grain size of about 20μm, and only a small amount of β-AI5(Fe,Mn)Si phase remains. With USV treatment, the ultimate tensile strengths (UTS) of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 ℃ are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.展开更多
The effects of ultrasonic vibration(UV)treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed.Good semi-solid slurry can be produced by high-intensity U...The effects of ultrasonic vibration(UV)treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed.Good semi-solid slurry can be produced by high-intensity UV process for aluminum alloys.The microstructures of Al-Si,Al-Mg and Al-Cu alloys produced by rheocasting assisted with UV are compact and with fine grains.The mechanical properties of the UV treated alloys are increased by about 20%-30%.Grain refinement of the alloys is generally considered because of cavitation and acoustic streaming caused by UV.Apart from these mechanisms,a hypothesis of the fuse of dendrite root caused by capillary infiltration in the ultrasonic field,as well as a mechanism of crystallites falling off from the mould-wall and crystal multiplication by mechanical vibration effect in indirect ultrasonic vibration are proposed to explain the microstructure evolution of the alloys.展开更多
The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibr...The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibrations is performed to explore the cause of the surface effect.The frictional characteristics are investigated,and the corresponding friction expressions are established based on the contact mechanics and the elastic–plastic contact model for rough surfaces.Friction is caused by the elastic–plastic deformation of contacting asperities under normal loads.The actual contacting region between two surfaces increases with normal loads,whereas the normal distance decreases.The normal distance between the contacting surfaces is changed,asperities generate a tangential deformation with ultrasonic vibrations,and the friction coefficient is eventually altered.Ultrasonic vibrations are applied on a 40Cr steel punch at the frequency of 20 kHz and the amplitude of 4.2μm.In the friction tests,the punch is perpendicular to the surface of the magnesium alloy AZ31B sheet metals and is sliding with a relative velocity of 1 mm/s.The test results show that the friction coefficient is decreased by approximately 40%and the theoretical values are in accordance with the test values;Ultrasonic vibrations can clearly reduce wear and improve the surface quality of parts.展开更多
Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the t...Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder.展开更多
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金funded by the National Natural Science Foundation of China(Nos.52271102,52075198 and 52205359)。
文摘In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金support from the Department of Science and Technology (DST),Government of India (Grant No.ECR/DST/2017/000918)the Indian Institute of Technology Ropar for providing financial support under an ISIRD grant (F.No.9-282/2017IITRPR/705).
文摘Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.
基金Project(2012CB619600)supported by the National Basic Research Program of ChinaProject(50775086)supported by the National Natural Science Foundation of China
文摘The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.
基金Project(2009AA03Z525)supported by the High-tech Research and Development Program of ChinaProject(NCET-08-0080)supported by the Program of New Century Excellent Talents of the Ministry of Education of China+1 种基金Project(20082172)supported by the Natural Science Fund of Liaoning Province,ChinaProject(2009J21DW003)supported by the Science and Technology Fund of Dalian City,China
文摘Ultrasonic vibration was introduced into the Mg-8Li-3A1 alloy melt during its solidification process. The microstructure, corrosion resistance and mechanical properties of the Mg-8Li-3A1 alloy under ultrasonic vibration were investigated. The experiment results show that the morphology of a phase is modified from coarse rosette-like structure to fine globular one with the application of ultrasonic vibration. The fine globular structure is obtained especially when the power is 170 W, and the refining effect also gets better with prolonging the ultrasonic treatment time. The corrosion resistance of the alloy with 170 W of ultrasonic vibration for 90 s is improved apparently compared with the alloy without ultrasonic vibration. The mechanical properties of alloys with ultrasonic vibration are also both improved apparently. The tensile strength and elongation of alloy improve by 9.5% and 45.7%, respectively, with 170 W of ultrasonic treatment for 90 s.
基金Project(2011M500772)supported by China Postdoctoral Science Foundation of ChinaProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech R&D Program of China
文摘The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.
基金Project(51105250)supported by the National Natural Science Foundation of ChinaProject(P2015-13)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.
基金Project (2009ZX04013-033) supported by the Major Scientific and Technological Special Project of ChinaProject (50775086) supported by the National Natural Science Foundation of China
文摘A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigated. Besides the microstructures of primary Si particles and α(Al)+β-Si eutectic phases, non-equilibrium α(Al) particles or dendrites are discovered in the microstructure of the Al-20Si-2Cu-0.4Mg-1Ni alloy. Rapid cooling generated by squeeze casting process rather than the pressure is considered as the main reason for the formation of non-equilibrium α(Al) phase. The sound pressurizing effect of ultrasonic vibration also enables the non-equilibrium α(Al) phases to form above eutectic temperature and grow into non-dendritic spheroids in the process of semi-solid slurry preparation. Non-equilibrium α(Al) phases formed in the hypereutectic Al-Si alloy with ultrasonic vibration treatment, consist of round α(Al) grains formed above the eutectic temperature and a small amount of fine α(Al) dendrites formed under the eutectic temperature. The volume fraction of primary Si particles is decreased significantly by the effect of ultrasonic vibration through increasing the solid solubility of Si atoms in α(Al) matrix and decreasing the forming temperature range of primary Si particles. The average particle diameter and the volume fraction of primary Si particles in microstructure of the swash-plate by rheo-squeeze casting are 24.3 μm and 11.1%, respectively.
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Province Universities,China
文摘Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".
文摘The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.
文摘In this study, a series of tests were conducted by using aluminum-based alloy to determine the formation of grain refining structure based on the ultrasonic vibration (UV). Furthermore, the simulation test and effect of ultrasonic output power were studied using ammonium chloride. Finally, the mechanism of grain refinement was investigated. The results show that: (1) By applying the UV to aluminum-base alloy, the grain refining rate of ingots tended to increase with the increase of the output value of UV. (2) It was confirmed that time from after the pour to the beginning of crystallization as well as cloudiness tended to decrease with increasing the ultrasonic power value of UV. Moreover, it can be seen from each cooling curve that a uniform temperature gradient existed in the melt as the power of UV increased, that made the melt strongly stirred. (3) It was also considered that the grain refining effect of ingots, which was observed from the simulation tests, resulted from nucleation action and stirring division action by applying the UV.
基金Supported by National Natural Science Foundation of China(Grant No.U1737212)National Science and Technology Major Project of China(Grant No.J2019-VII-0014-0154)Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars of China(Grant No.2019JC-09).
文摘Compared with conventional forming processes,ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials.Owing to the advantages of reduced forming force,improved surface quality,avoidance of forming defects,and strengthened surface structure,ultrasonic-assisted forming technology has been applied to increasingly advanced forming processes,such as incremental forming,spinning,and micro-forming.However,in the ultrasonic-assisted forming process,there are multiple ultrasonic mechanisms,such as the volume effect and surface effect.The explanation of the effect of ultrasonic vibration(UV)on plastic deformation remains controversial,hindering the development of related technologies.Recently,many researchers have proposed many new theories and technologies for ultrasonic-assisted forming.To summarize these developments,systematic discussions on mechanisms,theoretical models,and forming performances are provided in this review.On this basis,the limitations of the current study are discussed.In addition,an outlook for ultrasonic-assisted forming is proposed:efficient and stable UV systems,difficulty forming components with complex geometry,explanation of the in-depth mechanism,a systematic theoretical prediction model,and multi-field-coupling energy-assisted forming are considered to be hot spots in future studies.The present review enhances existing knowledge of ultrasonic-assisted forming,and facilitates a fast reference for related researchers.
基金Project(51375119) supported by the National Natural Science Foundation of China
文摘Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results.
基金Projects(51375269,51675307) supported by the National Natural Science Foundation of China
文摘Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy.
文摘Many applications of ultrasonic-assisted methods were used during metal solidification, but they could not be introduced into weld pool. In this paper, a way of ultrasonic assisted TIG welding is introduced. By directly imposed ultrasonic vibration on welding arc, the vibration interacts with arc plasma and passes to the weld pool. Measurement results show that arc pressure is significantly increased with the ultrasonic vibration and the arc pressure distribution models are changed. Bead-on-plate welding tests on SUS304 confirm that this technology can influence the style of metal melting and increase weld penetration depth.
基金funded by Project 51275183 supported by the National Natural Science Foundation of Chinaby the National Basic Research Program of China(973Program)(No.2012CB619600)
文摘The research studied the combined effects of ultrasonic vibration (USV) and manganese on the Fe-containing inter-metallic compounds and mechanical properties of AI-17Si-3Fe-2Cu-1Ni (wt.%) alloys. The results showed that, without USV, the alloys with 0.4wt.% Mn or 0.8wt.% Mn both contain a large amount of coarse plate-like δ-AI4(Fe,Mn)Si2 phase and long needle-like β-A15(Fe,Mn)Si phase. When the Mn content changes from 0.4wt.% to 0.8wt.% in the alloys, the amount and the length of needle-like β-AI5(Fe,Mn)Si phase decrease and the plate-like δ-A14(Fe,Mn)Si2 phase becomes much coarser. After USV treatment, the Fe- containing compounds in the alloys are refined and exist mainly as δ-AI4(Fe,Mn)Si2 particles with an average grain size of about 20μm, and only a small amount of β-AI5(Fe,Mn)Si phase remains. With USV treatment, the ultimate tensile strengths (UTS) of the alloys containing 0.4wt.%Mn and 0.8wt.%Mn at room temperature are 253 MPa and 262 MPa, respectively, and the ultimate tensile strengths at 350 ℃ are 129 MPa and 135 MPa, respectively. It is considered that the modified morphology and uniform distribution of the Fe-containing inter-metallic compounds, which are caused by the USV process, are the main reasons for the increase in the tensile strength of these two alloys.
文摘The effects of ultrasonic vibration(UV)treatment on microstructure of semi-solid aluminum alloys and the application of UV in rheocasting process are reviewed.Good semi-solid slurry can be produced by high-intensity UV process for aluminum alloys.The microstructures of Al-Si,Al-Mg and Al-Cu alloys produced by rheocasting assisted with UV are compact and with fine grains.The mechanical properties of the UV treated alloys are increased by about 20%-30%.Grain refinement of the alloys is generally considered because of cavitation and acoustic streaming caused by UV.Apart from these mechanisms,a hypothesis of the fuse of dendrite root caused by capillary infiltration in the ultrasonic field,as well as a mechanism of crystallites falling off from the mould-wall and crystal multiplication by mechanical vibration effect in indirect ultrasonic vibration are proposed to explain the microstructure evolution of the alloys.
基金Projects(51775480,51305385)supported by the National Natural Science Foundation of ChinaProject(E2018203143)supported by the Natural Science Foundation of Hebei Province,China
文摘The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibrations is performed to explore the cause of the surface effect.The frictional characteristics are investigated,and the corresponding friction expressions are established based on the contact mechanics and the elastic–plastic contact model for rough surfaces.Friction is caused by the elastic–plastic deformation of contacting asperities under normal loads.The actual contacting region between two surfaces increases with normal loads,whereas the normal distance decreases.The normal distance between the contacting surfaces is changed,asperities generate a tangential deformation with ultrasonic vibrations,and the friction coefficient is eventually altered.Ultrasonic vibrations are applied on a 40Cr steel punch at the frequency of 20 kHz and the amplitude of 4.2μm.In the friction tests,the punch is perpendicular to the surface of the magnesium alloy AZ31B sheet metals and is sliding with a relative velocity of 1 mm/s.The test results show that the friction coefficient is decreased by approximately 40%and the theoretical values are in accordance with the test values;Ultrasonic vibrations can clearly reduce wear and improve the surface quality of parts.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA03A238)National Natural Science Foundation of China (Grant No. 51005186)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B39)
文摘Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder.