This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and eff...This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and effects of ultrasonic vibrations on process effectiveness and joint quality. The trends of various aspects with and without ultrasonic vibrations in FSW process are studied and presented. The influence of ultrasonic vibrations on welding loads, temperature history, weld morphology, material flow, weld microstructure and mechanical properties are revisited. Ultrasonic assisted FSW offers numerous advantages over the conventional FSW process. The superimposing of high-frequency vibrations improves various phenomena of the process and the physical,metallurgical,mechanical and tribological properties of the welded joint. The ultrasonic assisted FSW process has a potential to benefit the industry sector. A checklist listing the materials and process parameters used in the documented studies has been presented for quick reference.展开更多
Separate characteristic of the tangential ultrasonic vibration assisted grinding (TUAG) machining is analyzed based on TUAG process, and a critical speed formula is given to correctly set the machining parameters to i...Separate characteristic of the tangential ultrasonic vibration assisted grinding (TUAG) machining is analyzed based on TUAG process, and a critical speed formula is given to correctly set the machining parameters to insure the separate characteristics of TUAG process. The critical speed is not only related to the ultrasonic vibration amplitude and frequency, but also to the grinding wheel velocity and the cutting point space, and the grinding force can be decreased during the TUAG process with separability. Grinding force experiments are conducted, and the experimental results are in good agreement with the theoretical results.展开更多
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
The effects of ultrasonic vibration assisted(UVA) treatment on the microstructures and mechanical properties of MB3/AZ31 dissimilar magnesium(Mg) alloy joints were studied by microstructural characterization, micr...The effects of ultrasonic vibration assisted(UVA) treatment on the microstructures and mechanical properties of MB3/AZ31 dissimilar magnesium(Mg) alloy joints were studied by microstructural characterization, micro-hardness testing and tensile testing. Results indicate that the welding pores are eliminated and coarse a-Mg grains of fusion zone are refined to 26 μm, owing to the acoustic streaming effect and cavitation effect induced by the UVA treatment with an optimal ultrasonic power of 1.0 kW.In addition, Mg;Al;precipitation phases are fine and uniformly distributed in the whole fusion zone of weldment. Micro-hardness of fusion zone of the Mg alloy joints increases to 53.5 HV after UVA process,and the maximum tensile strength with optimized UVA treatment increases to 263 MPa, which leads to fracture occurrence in the Mg alloy base plate. Eventually, it is experimentally demonstrated that robust MB3/AZ31 Mg alloy joints can be obtained by UVA process.展开更多
Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The re...Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The results show that TMM often forms pits,bumps and gullies in the size effect range.UVAMM effectively improves the surface quality compared with TMM.The surface defects are significantly reduced with the increase of feed per tooth(fz).When fz exceeds 4 lm,the effect of ultrasonic vibration on the surface quality is no longer obvious.The minimum burr size on the down milling side and the up milling side are 50.23 lm and 36.57 lm,respectively.The feasibility of vibration cutting in improving surface quality and suppressing burr size was verified.UVAMM effectively suppresses the formation of built-up edge,which can significantly improve the micromilling process.The cutting force is obtained through simulation and experiment.They are agreement in the change trend.The finite element simulation can be used to predict the cutting force.Compared with TMM,feeding force(Fx),radial force(Fy)and axial force(Fz)of UVAMM decrease by 7.6%,11.5%and 1.3%,respectively.展开更多
Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make ...Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51475272 and 51550110501)the GKP Acknow ledges the Research Fellow ship of Shandong University
文摘This paper aims to reviewthe state-of-the-art of ultrasonic vibration assisted friction stir welding(UVAFSW) process. Particular attention has been paid on the modes of ultrasonic exertion,experimental results and effects of ultrasonic vibrations on process effectiveness and joint quality. The trends of various aspects with and without ultrasonic vibrations in FSW process are studied and presented. The influence of ultrasonic vibrations on welding loads, temperature history, weld morphology, material flow, weld microstructure and mechanical properties are revisited. Ultrasonic assisted FSW offers numerous advantages over the conventional FSW process. The superimposing of high-frequency vibrations improves various phenomena of the process and the physical,metallurgical,mechanical and tribological properties of the welded joint. The ultrasonic assisted FSW process has a potential to benefit the industry sector. A checklist listing the materials and process parameters used in the documented studies has been presented for quick reference.
基金supported by the National Natural Science Foundation of China (Grant No.50575127)
文摘Separate characteristic of the tangential ultrasonic vibration assisted grinding (TUAG) machining is analyzed based on TUAG process, and a critical speed formula is given to correctly set the machining parameters to insure the separate characteristics of TUAG process. The critical speed is not only related to the ultrasonic vibration amplitude and frequency, but also to the grinding wheel velocity and the cutting point space, and the grinding force can be decreased during the TUAG process with separability. Grinding force experiments are conducted, and the experimental results are in good agreement with the theoretical results.
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
基金the financial support by the National Natural Science Foundation of China(No.51575067)the Major and Special Project by Ministry of Science and Technology(No.2012ZX04010-081)
文摘The effects of ultrasonic vibration assisted(UVA) treatment on the microstructures and mechanical properties of MB3/AZ31 dissimilar magnesium(Mg) alloy joints were studied by microstructural characterization, micro-hardness testing and tensile testing. Results indicate that the welding pores are eliminated and coarse a-Mg grains of fusion zone are refined to 26 μm, owing to the acoustic streaming effect and cavitation effect induced by the UVA treatment with an optimal ultrasonic power of 1.0 kW.In addition, Mg;Al;precipitation phases are fine and uniformly distributed in the whole fusion zone of weldment. Micro-hardness of fusion zone of the Mg alloy joints increases to 53.5 HV after UVA process,and the maximum tensile strength with optimized UVA treatment increases to 263 MPa, which leads to fracture occurrence in the Mg alloy base plate. Eventually, it is experimentally demonstrated that robust MB3/AZ31 Mg alloy joints can be obtained by UVA process.
基金Agricultural Key Applied Project of China(No.SD2019NJ015)Project for the Innovation Team of Universities and Institutes in Jinan of China(No.2018GXRC005)。
文摘Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The results show that TMM often forms pits,bumps and gullies in the size effect range.UVAMM effectively improves the surface quality compared with TMM.The surface defects are significantly reduced with the increase of feed per tooth(fz).When fz exceeds 4 lm,the effect of ultrasonic vibration on the surface quality is no longer obvious.The minimum burr size on the down milling side and the up milling side are 50.23 lm and 36.57 lm,respectively.The feasibility of vibration cutting in improving surface quality and suppressing burr size was verified.UVAMM effectively suppresses the formation of built-up edge,which can significantly improve the micromilling process.The cutting force is obtained through simulation and experiment.They are agreement in the change trend.The finite element simulation can be used to predict the cutting force.Compared with TMM,feeding force(Fx),radial force(Fy)and axial force(Fz)of UVAMM decrease by 7.6%,11.5%and 1.3%,respectively.
基金the Australian Research Council for its financial support to this work
文摘Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.