The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the p...The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole.展开更多
Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o...Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality.展开更多
Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied ...Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied to the cutting tools,is a recently proposed hole-making method that integrates precision-machining and surface strengthening by single-shot operation.In the study,kinematics,material removal mechanism and strengthening mechanism for UPD of Al-Li alloy by helical fluted reamers are analyzed.The effect of transversal vibration on the cutting performance and surface integrity is studied through comparative experiments between UPD and conventional drilling(CD)of Al-Li alloy holes.The experimental results show that UPD exhibits superior cutting performance with a maximum reduction of 52.6%in thrust force and 52.3%in torque,respectively,compared to CD.Moreover,narrower dimensional tolerance is obtained in UPD due to the reduced transversal force and improved machining stability.Additionally,deeper plastic deformation,higher surface microhardness and residual compressive stress of machined holes are obtained by UPD.The electron back-scattered diffraction(EBSD)analysis confirms that deeper machined affect area and grain refinement are realized in UPD.Therefore,the results indicate that UPD is a feasible method for achieving high-precision and strengthened holes for Al-Li alloy.展开更多
Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for the...Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC.展开更多
Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mecha...Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibrationassisted milling metal matrix composites are still needed to be developed.In this paper,an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB_(2)/7050 Al metal matrix composites.During modeling,change of motion of the cutting tool,contact of toolchip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model.Meanwhile,material properties,tool geometry,cutting parameters and vibration parameters were taken into consideration.Furthermore,the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB_(2)/7050 Al metal matrix composites.The predicted cutting forces show to be consistent well with the measured cutting forces.Besides,the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4%to 15.1%.The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB_(2)/7050 Al metal matrix composites,which was proved with general applicability.展开更多
Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is deve...Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is developed to solve the precision machining problem of tungsten heavy alloy.A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed,and its design process is greatly simplified.The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes.A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus,which is verified by finite element method.The vibration unit can display different three-degree-of-freedom(3-DOF)UEVC characteristics by adjusting the corresponding position of the unit and workpiece.A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit,which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2μm.Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system,which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.展开更多
An amendment to the speed property theory by Japanese professor Kumabe is proposed. A large number of experimental investigations show that ultrasonic vibration cutting in unseparating zone presents not a mono state b...An amendment to the speed property theory by Japanese professor Kumabe is proposed. A large number of experimental investigations show that ultrasonic vibration cutting in unseparating zone presents not a mono state but many states. This result has broken through the restriction of the critical cutting speed on ultrasonic vibration cutting.展开更多
It is known that the chatter in machining is harmful, seriously influences the production efficiency and directly imperils the quality of mechanical products. Reducing the chatter is a difficult problem not only in cu...It is known that the chatter in machining is harmful, seriously influences the production efficiency and directly imperils the quality of mechanical products. Reducing the chatter is a difficult problem not only in cutting theory but also in production practice. A lot of scholars at home and abroad have done much work on studying the chatter regularity and the展开更多
Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promis...Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promising method to achieve better cutting performance than conventional techniques.High-frequency ID UVC possesses higher nominal cutting speed and material removal rate than many 2D/3D UVC systems,and thus,it has great development potential in industrial applications of structured silicon components.However,few researchers have applied ID UVC to the cutting of structured silicon surfaces,since its main drawback is tool marks imprinted by the vibration on machined surface.In this study,to uncover the key machining characteristics under the condition of ID UVC,a series of tests involving diamond cutting grooves were first performed on the silicon surface.The machined surface and chips were subsequently measured and analyzed to evaluate the critical undeformed chip thickness,surface characteristics,and chip formation.Regarding the main drawback of ID UVC,a novel theoretical model was developed for predicting the length of tool marks and evaluating the impact of tool marks on the surface finish.The results demonstrated that the critical undeformed chip thickness of silicon reached 1030 nm under a certain vibration amplitude and that an array of micro grooves was generated at the plastic region with a surface roughness(7?a)as low as 1.11 nm.Moreover,the micro topography of the continuous chips exhibited discontinuous clusters of lines with diameters of dozens of nanometers,only composed of polysilicon.The novel theoretical model was able to predict the length of tool marks with low error.Thus,the impact of tool marks on the surface finish can be reduced and even eliminated with help of the model.展开更多
A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and...A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and PID control algorithm was established to guarantee specific precision. Apart from experimental validation of the performance of the system, various micro-V-grooves cutting experiments on aluminum alloy, ferrous material and hard cutting material were performed, in which Kistler force sensor was used to measure cutting force. Through experiments, it was clear that the vibration-assisted micro-engraving system can ensure good quality of micro-V-grooves and reduce cutting force by about 60% compared with traditional removal process without ultrasonic vibration.展开更多
Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The re...Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The results show that TMM often forms pits,bumps and gullies in the size effect range.UVAMM effectively improves the surface quality compared with TMM.The surface defects are significantly reduced with the increase of feed per tooth(fz).When fz exceeds 4 lm,the effect of ultrasonic vibration on the surface quality is no longer obvious.The minimum burr size on the down milling side and the up milling side are 50.23 lm and 36.57 lm,respectively.The feasibility of vibration cutting in improving surface quality and suppressing burr size was verified.UVAMM effectively suppresses the formation of built-up edge,which can significantly improve the micromilling process.The cutting force is obtained through simulation and experiment.They are agreement in the change trend.The finite element simulation can be used to predict the cutting force.Compared with TMM,feeding force(Fx),radial force(Fy)and axial force(Fz)of UVAMM decrease by 7.6%,11.5%and 1.3%,respectively.展开更多
The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine,owing to hard ceramic particles in the matrix.In the milling process,the polycrystalline diamond(PCD)tools ar...The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine,owing to hard ceramic particles in the matrix.In the milling process,the polycrystalline diamond(PCD)tools are used for machining these materials instead of carbide cutting tools,which significantly increase the machining cost.In this study,ultrasonic vibration method was applied for milling in-situ TiB2/7050A1 metal matrix composites using a TiAIN coated carbide end milling tool.To completely understand the tool wear mechanism in ultrasonic-vibration assisted milling(UAM),the relative motion of the cutting tool and interaction of workpiecetool-chip contact interface was analyzed in detail.Additionally,a comparative experimental study with and without ultrasonic vibration was carried out to investigate the infuences of ultrasonic vibration and cutting parameters on the cutting force,tool life and tool wear mechanism.The results show that the motion of the cutting tool relative to the chip changes periodically in the helical direction and the separation of tool and chip occurs in the transverse direction in one vibration period,in ultrasonic vibration assisted cutting.I arge instantaneous acceleration can be obtained in axial ultrasonic vibration milling.The cutting force in axial direction is significantly reduced by 42%-57%,40%--57%and 44%-54%,at different cutting speeds,feed rates and cutting depths,respectively,compared with that in conventional milling.Additionally,the tool life is prolonged approximately 2--5 times when the ultrasonic vibration method is applied.The tool wear pattern microcracks are only found in UAM.These might be of great importance for future research in order to understand the cutting mechanisms in UAM of in-situ TiB2/7050A1 metal matrix composites.展开更多
Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make ...Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.展开更多
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
文摘The cutting performance of particle reinforced meta ll ic matrix composites (PRMMCs) SiC p/Al in ultrasonic vibration cutting and comm on cutting with carbide tools and PCD tools was experimentally researched in the paper. The changing rules of chip shape, deformation coefficient, shear angle a nd surface residual stress were presented by ultrasonic vibration cutting. Resul ts show: when adopting common cutting, spiral chip with smaller curl radius will be obtained. The chip with zigzag contour is short and thick. There are lots of sheet cracking both on the face of the chip and on the machined surface. That i s to say, the cutting process of metallic matrix composites(MMCs) is not all lik e the cutting process of plastic material. It is akin to the breaking process of brittle material. By comparison, when adopting ultrasonic cutting, because tool contacts with workpiece intermittently in high frequency, deformation of chip i s small, loose spiral chip with larger curl radius is long and thin. The phenome non is just similar to vibration cutting of plastic material. But the chip still belongs to plastic or semi-plastic segmental chip due to the structure charact eristics of the material itself. Furthermore, the tangential residual compressio n stress of vibration cutting is larger than that of common cutting, axial resid ual stress has a relation to the feed rate and residual stress does not changes obviously with cutting depth and they are in the same order of magnitude on the whole. According to the test result analyzing, the following conclusions are put forward: 1) The extruding deformation is serious in common cutting PRMMCs, defo rmation of it’s chip is larger, and the chip with lesser curl radius is short. Whereas, the deformation of chip in vibration cutting PRMMCs is lesser, the curl radius is bigger, and the loose chips are obtained at every turn. 2) The cuttin g deformation coefficient of chip in vibration cutting is lesser than that in co mmon cutting, however the shear angle is bigger. 3) The tangential residual compression stress of vibration cutting is larger than that of common cutting, a nd residual stress does not change obviously with cutting depth, they are in the same order of magnitude on the whole.
基金Funded by the Basic Research Projects in Shanxi Province(202103021224183)。
文摘Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality.
基金Supported by National Natural Science Foundation of China(Nos.52375399,91960203 and 51975035)Chinese Aeronautical Establishment Aeronautical Science Foundation(No.2022Z045051001).
文摘Advanced hole-making process is of great importance to enhance the fatigue performance of Al-Li alloy part in aviation industry.Ultrasonic peening drilling(UPD),in which an ultrasonic transversal vibration is applied to the cutting tools,is a recently proposed hole-making method that integrates precision-machining and surface strengthening by single-shot operation.In the study,kinematics,material removal mechanism and strengthening mechanism for UPD of Al-Li alloy by helical fluted reamers are analyzed.The effect of transversal vibration on the cutting performance and surface integrity is studied through comparative experiments between UPD and conventional drilling(CD)of Al-Li alloy holes.The experimental results show that UPD exhibits superior cutting performance with a maximum reduction of 52.6%in thrust force and 52.3%in torque,respectively,compared to CD.Moreover,narrower dimensional tolerance is obtained in UPD due to the reduced transversal force and improved machining stability.Additionally,deeper plastic deformation,higher surface microhardness and residual compressive stress of machined holes are obtained by UPD.The electron back-scattered diffraction(EBSD)analysis confirms that deeper machined affect area and grain refinement are realized in UPD.Therefore,the results indicate that UPD is a feasible method for achieving high-precision and strengthened holes for Al-Li alloy.
基金supported by the Defense Industrial Technology Development Program of China(No.JCKY2018601C209)。
文摘Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC.
基金sponsored by National Natural Science Foundation of China(No.51775443)National Science and Technology Major Project of China(No.2017-Ⅶ-0015-0111)。
文摘Ultrasonic vibration-assisted milling has been widely applied in machining the difficultto-cut materials owing to the remarkable improvements in reducing the cutting force.However,analytical models to reveal the mechanism and predict the cutting force of ultrasonic vibrationassisted milling metal matrix composites are still needed to be developed.In this paper,an analytical model of cutting force was established for ultrasonic vibration-assisted milling in-situ TiB_(2)/7050 Al metal matrix composites.During modeling,change of motion of the cutting tool,contact of toolchip-workpiece and acceleration of the chip caused by ultrasonic vibration was considered based on equivalent oblique cutting model.Meanwhile,material properties,tool geometry,cutting parameters and vibration parameters were taken into consideration.Furthermore,the developed analytical force model was validated with and without ultrasonic vibration milling experiments on in-situ TiB_(2)/7050 Al metal matrix composites.The predicted cutting forces show to be consistent well with the measured cutting forces.Besides,the relative error of instantaneous maximum forces between the predicted and measured data is from 0.4%to 15.1%.The analytical model is significant for cutting force prediction not only in ultrasonic-vibration assisted milling but also in conventional milling in-situ TiB_(2)/7050 Al metal matrix composites,which was proved with general applicability.
基金support from the National Natural Science Foundation of China(Grant No.U20A20291)the Xingliao Talent Program of Liaoning Province,China(Grant No.XLYC1907183)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT22ZD201).
文摘Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments.In this study,a high-performance ultrasonic elliptical vibration cutting(UEVC)system is developed to solve the precision machining problem of tungsten heavy alloy.A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed,and its design process is greatly simplified.The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes.A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus,which is verified by finite element method.The vibration unit can display different three-degree-of-freedom(3-DOF)UEVC characteristics by adjusting the corresponding position of the unit and workpiece.A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit,which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2μm.Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system,which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.
基金Project Supported by the National Natural Science Foundation of China
文摘An amendment to the speed property theory by Japanese professor Kumabe is proposed. A large number of experimental investigations show that ultrasonic vibration cutting in unseparating zone presents not a mono state but many states. This result has broken through the restriction of the critical cutting speed on ultrasonic vibration cutting.
基金Project supported by the National Natural Science Foundation of China (No. 5860132).
文摘It is known that the chatter in machining is harmful, seriously influences the production efficiency and directly imperils the quality of mechanical products. Reducing the chatter is a difficult problem not only in cutting theory but also in production practice. A lot of scholars at home and abroad have done much work on studying the chatter regularity and the
基金The authors would like to express their sincere thanks to the National Natural Science Foundation of China(Grant No.51775482)the Hebei Province Natural Science Foundation of China(Grant No.E2016203372)for their financial support in this research work.
文摘Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promising method to achieve better cutting performance than conventional techniques.High-frequency ID UVC possesses higher nominal cutting speed and material removal rate than many 2D/3D UVC systems,and thus,it has great development potential in industrial applications of structured silicon components.However,few researchers have applied ID UVC to the cutting of structured silicon surfaces,since its main drawback is tool marks imprinted by the vibration on machined surface.In this study,to uncover the key machining characteristics under the condition of ID UVC,a series of tests involving diamond cutting grooves were first performed on the silicon surface.The machined surface and chips were subsequently measured and analyzed to evaluate the critical undeformed chip thickness,surface characteristics,and chip formation.Regarding the main drawback of ID UVC,a novel theoretical model was developed for predicting the length of tool marks and evaluating the impact of tool marks on the surface finish.The results demonstrated that the critical undeformed chip thickness of silicon reached 1030 nm under a certain vibration amplitude and that an array of micro grooves was generated at the plastic region with a surface roughness(7?a)as low as 1.11 nm.Moreover,the micro topography of the continuous chips exhibited discontinuous clusters of lines with diameters of dozens of nanometers,only composed of polysilicon.The novel theoretical model was able to predict the length of tool marks with low error.Thus,the impact of tool marks on the surface finish can be reduced and even eliminated with help of the model.
基金Supported by National High Technology Research and Development Program of China ("863" Program, No. 2009AA043802)Japan Society for the Promotion of Science
文摘A novel precision vibration-assisted micro-engraving system was developed by the integration of fast tool servo and ultrasonic elliptical vibration system, in which the flexure hinge was designed to avoid backlash and PID control algorithm was established to guarantee specific precision. Apart from experimental validation of the performance of the system, various micro-V-grooves cutting experiments on aluminum alloy, ferrous material and hard cutting material were performed, in which Kistler force sensor was used to measure cutting force. Through experiments, it was clear that the vibration-assisted micro-engraving system can ensure good quality of micro-V-grooves and reduce cutting force by about 60% compared with traditional removal process without ultrasonic vibration.
基金Agricultural Key Applied Project of China(No.SD2019NJ015)Project for the Innovation Team of Universities and Institutes in Jinan of China(No.2018GXRC005)。
文摘Inconel718 was machined with the traditional micromilling(TMM)and ultrasonic vibration assisted micromilling(UVAMM)with the different technology parameters,whose surface quality and burrs formation were studied.The results show that TMM often forms pits,bumps and gullies in the size effect range.UVAMM effectively improves the surface quality compared with TMM.The surface defects are significantly reduced with the increase of feed per tooth(fz).When fz exceeds 4 lm,the effect of ultrasonic vibration on the surface quality is no longer obvious.The minimum burr size on the down milling side and the up milling side are 50.23 lm and 36.57 lm,respectively.The feasibility of vibration cutting in improving surface quality and suppressing burr size was verified.UVAMM effectively suppresses the formation of built-up edge,which can significantly improve the micromilling process.The cutting force is obtained through simulation and experiment.They are agreement in the change trend.The finite element simulation can be used to predict the cutting force.Compared with TMM,feeding force(Fx),radial force(Fy)and axial force(Fz)of UVAMM decrease by 7.6%,11.5%and 1.3%,respectively.
基金sponsored by the National Natural Science Foundation of China(Grant No.51775443)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No.CX201829)the National Science and Technology Major Project(Grant No.2017-Ⅶ-0015-0111).
文摘The in-situ TiB2 particle reinforced aluminum matrix composites are materials that are difficult to machine,owing to hard ceramic particles in the matrix.In the milling process,the polycrystalline diamond(PCD)tools are used for machining these materials instead of carbide cutting tools,which significantly increase the machining cost.In this study,ultrasonic vibration method was applied for milling in-situ TiB2/7050A1 metal matrix composites using a TiAIN coated carbide end milling tool.To completely understand the tool wear mechanism in ultrasonic-vibration assisted milling(UAM),the relative motion of the cutting tool and interaction of workpiecetool-chip contact interface was analyzed in detail.Additionally,a comparative experimental study with and without ultrasonic vibration was carried out to investigate the infuences of ultrasonic vibration and cutting parameters on the cutting force,tool life and tool wear mechanism.The results show that the motion of the cutting tool relative to the chip changes periodically in the helical direction and the separation of tool and chip occurs in the transverse direction in one vibration period,in ultrasonic vibration assisted cutting.I arge instantaneous acceleration can be obtained in axial ultrasonic vibration milling.The cutting force in axial direction is significantly reduced by 42%-57%,40%--57%and 44%-54%,at different cutting speeds,feed rates and cutting depths,respectively,compared with that in conventional milling.Additionally,the tool life is prolonged approximately 2--5 times when the ultrasonic vibration method is applied.The tool wear pattern microcracks are only found in UAM.These might be of great importance for future research in order to understand the cutting mechanisms in UAM of in-situ TiB2/7050A1 metal matrix composites.
基金the Australian Research Council for its financial support to this work
文摘Ultrasonic vibration-assisted (UVA) machining is a process which makes use of a micro-scale high frequency vibration applied to a cutting tool to improve the material removal effectiveness. Its principle is to make the tool-workpiece interaction a microscopically non-monotonic process to facilitate chip separation and to reduce machining forces. It can also reduce the deformation zone in a workpiece under machining, thereby improving the surface integrity of a component machined. There are several types of UVA machining processes, differentiated by the directions of the vibrations introduced relative to the cutting direction. Applications of UVA machining to a wide range of workpiece materials have shown that the process can considerably improve machining performance. This paper aims to provide a comprehensive discussion and review about some key aspects of UVA machining such as cutting kinematics and dynamics, effect of workpiece materials and wear of cutting tools, involving a wide range of workpiece materials including metal alloys, ceramics, amorphous and composite materials. Some aspects for further investigation are also outlined at the end.