Molecular dynamics method is applied to study the machining mechanisms of polishing based on coupling vibrations of liquid. The physical phenomena of abrasive particles bombarding on silicon monocrystal surface are si...Molecular dynamics method is applied to study the machining mechanisms of polishing based on coupling vibrations of liquid. The physical phenomena of abrasive particles bombarding on silicon monocrystal surface are simulated using Tersoff potentials. The effects of vibration parameters, particle size, incident angle and particle material are analyzed and discussed. Material removal mechanisms are studied. Deformation and embedment phenomena are found in the simulations, Bombardment will destroy the crystal structures near the impact point, and adhesion effect is responsible for final removal of material.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50375029)Provincial Natural Science Foundation of Guangdong,China(No.4009486).
文摘Molecular dynamics method is applied to study the machining mechanisms of polishing based on coupling vibrations of liquid. The physical phenomena of abrasive particles bombarding on silicon monocrystal surface are simulated using Tersoff potentials. The effects of vibration parameters, particle size, incident angle and particle material are analyzed and discussed. Material removal mechanisms are studied. Deformation and embedment phenomena are found in the simulations, Bombardment will destroy the crystal structures near the impact point, and adhesion effect is responsible for final removal of material.