Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-dom...The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.展开更多
Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of th...Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.展开更多
This paper introduces the design and development of intelligent ultrasonic "pig" used for seabed pipeline inspection. The data acquisition system (DAS) and the signal processing method are presented. The DAS was d...This paper introduces the design and development of intelligent ultrasonic "pig" used for seabed pipeline inspection. The data acquisition system (DAS) and the signal processing method are presented. The DAS was designed using a muhi-DSP based structure. The signal processing method adopted a well-enhanced split-spectrum processing (SSP) based on weighting algorithm according to statistical times, which was the statistical distribution of the discrete signals selected by the minimization algorithm. Furthermore, the data compressing method was discussed. It assures the mass data to be processed and compressed in real-time. The effectiveness of the method was proved by laboratory experiments. The research provides an excellent base for further development of the ultrasonic pig.展开更多
Compared with conventional forming processes,ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials.Owing to the advantages of reduc...Compared with conventional forming processes,ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials.Owing to the advantages of reduced forming force,improved surface quality,avoidance of forming defects,and strengthened surface structure,ultrasonic-assisted forming technology has been applied to increasingly advanced forming processes,such as incremental forming,spinning,and micro-forming.However,in the ultrasonic-assisted forming process,there are multiple ultrasonic mechanisms,such as the volume effect and surface effect.The explanation of the effect of ultrasonic vibration(UV)on plastic deformation remains controversial,hindering the development of related technologies.Recently,many researchers have proposed many new theories and technologies for ultrasonic-assisted forming.To summarize these developments,systematic discussions on mechanisms,theoretical models,and forming performances are provided in this review.On this basis,the limitations of the current study are discussed.In addition,an outlook for ultrasonic-assisted forming is proposed:efficient and stable UV systems,difficulty forming components with complex geometry,explanation of the in-depth mechanism,a systematic theoretical prediction model,and multi-field-coupling energy-assisted forming are considered to be hot spots in future studies.The present review enhances existing knowledge of ultrasonic-assisted forming,and facilitates a fast reference for related researchers.展开更多
At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fat...At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fatigue cracks.However,there are few studies on the effects of these key factors on fretting wear.In the paper,shot-peening(SP)and ultrasonic surface rolling process(USRP)were performed on Ti-6Al-4V plate specimens.The surface hardness and residual stresses of the material were tested by vickers indenter and X-ray diffraction residual stress analyzer.Microhardness were measured by HXD-1000MC/CD micro Vickers hardness tester.The effects of different surface strengthening on its fretting fatigue properties were verified by fretting fatigue experiments.The fretting fatigue fracture surface and wear morphology of the specimens were studied and analyzed by means of microscopic observation,and the mechanism of improving fretting fatigue life by surface strengthening process was further explained.After USRP treatment,the surface roughness of Ti-6Al-4V is significantly improved.In addition,the microhardness of the specimen after SP reaches the maximum at 80μm from the surface,which is about 123%higher than that of the AsR specimen.After USRP,it reaches the maximum at 150μm from the surface,which is about 128%higher than that of AsR specimen.It is also found that the residual compressive stress of the specimens treated by USRP and SP increases first and then decreases with the depth direction,and the residual stress reaches the maximum on the sub surface.The USRP specimen reaches the maximum value at 0.18 mm,about−550 MPa,while the SP specimen reaches the maximum value at 0.1 mm,about−380 MPa.The fretting fatigue life of Ti-6Al-4V effectively improved after USRP and SP.The surface integrity of specimens after USRP is the best,which has deeper residual compressive stress layer and more refined grain.In this paper,a fretting wear device is designed to carry out fretting fatigue experiments on specimens with different surface strengthening.展开更多
A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the all...A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.展开更多
A plate's internal quality is very critical, especially for boilers and high-pressure vessels. The ultrasonic test (UT) is the main type of non-destructive flaw detection for heavy plates, which is important becaus...A plate's internal quality is very critical, especially for boilers and high-pressure vessels. The ultrasonic test (UT) is the main type of non-destructive flaw detection for heavy plates, which is important because one of the main reasons for plate defects is ultrasonic flaws. This study, based on Baosteel' s practical experience in the manufacture of heavy plates, elucidates the cause of defect formation by analyzing ultrasonic flaw testing maps and using special equipment, such as the scanning electron microscope, electron probe and the optical microscope. The author puts forward the following improvement measures: ① Ultrasonic flaws are caused by central porosity and segregation,[H] bubbles and inclusion in slabs.②Ultrasonic flaws are more likely to occur in the bottom and top of slabs rather than the other positions in the casting sequence. It is clear that one-quarter of the inner camber' s thickness is accumulated inclusion.③It is clear that overheating in the tundish and the flow of the casting mould have an effect on ultrasonic flaws caused by inclusions.④Soft reduction improves central porosity and segregation,which decreases the number of ultrasonic flaws in the plate.展开更多
Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutti...Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutting forces with and without ultrasonic effect were analyzed theoretically and experimentally.The results indicate that the cutting force of diamond wire increases along with the spindle speed decrease and the lateral pressure increase.The force in ultrasonic vibration cutting is about 20% to 30% less than that in conventional cutting.Also,the cutting trajectory of single diamond grit in sawing process is simulated,and the reason that the ultrasonic vibration can reduce the cutting force is explained further.展开更多
The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drill...The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.展开更多
An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great ...An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.展开更多
This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose a...This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose any undefined load on the specimen like the electrostatic excitation and also this is the first actual use of ultrasonic wave for exciting a microstructure in the literature. Secondly, the amplitudes of the microstructure are determined by image edge detection using a Mexican hat wavelet transform on the vibrating images of the microstructure. The vibrating images are captured by a CCD camera when the microstructure is vibrated by ultrasonic waves at a series of discrete high frequencies (〉30 kHz). Upon processing the vibrating images, the amplitudes at various excitation frequencies are obtained and an amplitude-frequency spectrum is obtained from which the resonant frequency is subsequently evaluated. A micro silicon structure consisting of a perforated plate (192 × 192 μm) and two cantilever beams (76 × 43 μm) which is about 4 μm thickness is tested. Since laser interferometry is not required, thermal effects on a test object can be avoided. Hence, the setup is relatively simple. Results show that the proposed method is a simple and effective approach for evaluating the dynamic characteristics of microstructures.展开更多
In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener fi...In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.展开更多
In this paper the system for simulation, measurement and processing in graphical user interface implementa- tion is presented. The received signal from the simulation is compared to that of an actual measurement in th...In this paper the system for simulation, measurement and processing in graphical user interface implementa- tion is presented. The received signal from the simulation is compared to that of an actual measurement in the time domain. The comparison of simulated, experimental data clearly shows that acoustic wave propaga- tion can be modeled. The feasibility has been demonstrated in an ultrasound transducer setup for material property investigations. The results of simulation are compared to experimental measurements. Results ob- tained fit some much with those found in experiment and show the validity of the used model. The simula- tion tool therefore provides a way to predict the received signal before anything is built. Furthermore, the use of an ultrasonic simulation package allows for the development of the associated electronics to amplify and process the received ultrasonic signals. Such a virtual design and testing procedure not only can save us time and money, but also provide better understanding on design failures and allow us to modify designs more efficiently and economically.展开更多
The experimental installation and measurement system of ultrasonic wave property in rocks during complete stress-strain process were established and perfected. The interrelations between ultrasonic wave property of mu...The experimental installation and measurement system of ultrasonic wave property in rocks during complete stress-strain process were established and perfected. The interrelations between ultrasonic wave property of muds tone, sands tone and limestone specimens during complete stress-strain process and their mechanic property were investigated. A new type of device for the observation of surrounding rock stability-borehole ultrasonic device with completely dry coupling was developed to get better coupling and more accurate measurement data comparing with those of water coupling situation. Preliminary study on the application of ultrasonic measurement technique at belt conveyor roadway of north wing in Baodian Coal Mine (Shandong province) was conducted. Based on the interrelations between the complete stress-strain properties of specimens and their wave properties, the structural properties of surrounding rocks, the range of yield zones, and the change of stresses within surrounding rocks when a longwall face was across over the roadway were analyzed.Therefore,a new and feasible way was found for the research on the deformation law of surrounding rock of roadway and rational selection of support parameters.展开更多
Magnetic liquid can produce alternative internal pressure under the alternative high-frequency gradient magnetic field.Because it has higher bulk modulus,the internal pressure results in its volume change.Using piezoe...Magnetic liquid can produce alternative internal pressure under the alternative high-frequency gradient magnetic field.Because it has higher bulk modulus,the internal pressure results in its volume change.Using piezoelectric transducers,the ultrasonic wave generated by the vibration of magnetic liquids can be detected,which shows that the magnetic liquids have the magnetostrictive effect and can generate the ultrasonic vibration under the alternative magnetic gradient field.Some nonmagnetic abrasives and rust-proofing agents can be mixed into the magnetic liquids,under the alternative magnetic field,the abrasives held by magnetic liquids grind the surface of the workpieces,and thus,the finishing for the surface with complex shape,mold cavity and inner wall of tiny tubes can be realized.展开更多
Separating noise from observed signals was studied.When the small defect in the T-shape laser welding joint was inspected by ultrasonic testing system adopting independent component analysis(ICA) theory to process the...Separating noise from observed signals was studied.When the small defect in the T-shape laser welding joint was inspected by ultrasonic testing system adopting independent component analysis(ICA) theory to process the signals.The principle of automatic ultrasonic testing signals processing and negentropy law of ICA were introduced.The experimental data were processed using relative analysis tools and results showed that the ICA could separate defects signals from noise effectively in laboratory.展开更多
In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from th...In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from the parent metal, weld seam images were transformed to HSI color space. In the HSl colar space, the weld seam and base metal area can be apparently distinguished. By using this image processing algorithm, the edges and centerline of pipeline weld seam can be correctly extracted. An industrial application system was developed based on the image processing algorithm, and the image processing time is less than 70 ms and the accuracy of weld seam recognition is better than 2mm.展开更多
The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significance of processing Nd-Fe-B. Based on the formation principle of Scanning Electrtmic Micr...The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significance of processing Nd-Fe-B. Based on the formation principle of Scanning Electrtmic Microscope (SEM), and at the examination with the aid of SEM to the ultrasonic vibration honing Nd-Fe-B material's superficial microscopic topography, the paper discusses the new processing nechanism according to the SEM examination picture. The research indicates that as a result of supersonic high frequency vibration, the path of the abrasion extends at the same time, and the supersonic cavitation effect forms the intense shock-wave, knpacting Nd-Fe-B material's intemal surface, providing the supersonic energy for the superticial abrasive dust's dimination, which directly explain that the honing processing efficiency is enhanced, and the processing surface roughness is high.展开更多
Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bot...Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bottom surface of graphene is also inevitable;therefore, cleaning the bottom surface is crucial. In this study, we proposed an improved graphene wet transfer method using an ultrasonic processing(UP) step for etching copper(Cu). Using this method, the bottom surface can be cleaned efficiently. The results of atomic force microscopy(AFM)and Raman spectroscopy mapping revealed that the graphene films transferred with UP had smoother and cleaner surfaces, less contamination, and higher quality than those transferred without UP.展开更多
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.
基金supported by National Natural Science Foundation of China (Grant No. 60672108, Grant No. 60372020)
文摘The success of ultrasonic nondestructive testing technology depends not only on the generation and measurement of the desired waveform, but also on the signal processing of the measured waves. The traditional time-domain methods have been partly successful in identifying small cracks, but not so successful in estimating crack size, especially in strong backscattering noise. Sparse signal representation can provide sparse information that represents the signal time-frequency signature, which can also be used in processing ultrasonic nondestructive signals. A novel ultrasonic nondestructive signal processing algorithm based on signal sparse representation is proposed. In order to suppress noise, matching pursuit algorithm with Gabor dictionary is selected as the signal decomposition method. Precise echoes information, such as crack location and size, can be estimated by quantitative analysis with Gabor atom. To verify the performance, the proposed algorithm is applied to computer simulation signal and experimental ultrasonic signals which represent multiple backscattered echoes from a thin metal plate with artificial holes. The results show that this algorithm not only has an excellent performance even when dealing with signals in the presence of strong noise, but also is successful in estimating crack location and size. Moreover, the algorithm can be applied to data compression of ultrasonic nondestructive signal.
文摘Magnesium matrix nanocomposite reinforced with carbon nanotubes(CNTs/AZ91D) was fabricated by mechanical stirring and high intensity ultrasonic dispersion processing.The microstructures and mechanical properties of the nanocomposite were investigated.The results show that CNTs are well dispersed in the matrix and combined with the matrix very well.As compared with AZ91D magnesium alloy matrix,the tensile strength,yield strength and elongation of the 1.5%CNTs/AZ91D nanocomposite are improved by 22%,21%and 42%respectively in permanent mold casting.The strength and ductility of the nanocomposite are improved simultaneously.The tensile fracture analysis shows that the damage mechanism of nanocomposite is still brittle fracture.But the CNTs can prevent the local crack propagation to some extent.
基金Supported by the High Technology Research and Development Program of China (Grant No2001AA602021)
文摘This paper introduces the design and development of intelligent ultrasonic "pig" used for seabed pipeline inspection. The data acquisition system (DAS) and the signal processing method are presented. The DAS was designed using a muhi-DSP based structure. The signal processing method adopted a well-enhanced split-spectrum processing (SSP) based on weighting algorithm according to statistical times, which was the statistical distribution of the discrete signals selected by the minimization algorithm. Furthermore, the data compressing method was discussed. It assures the mass data to be processed and compressed in real-time. The effectiveness of the method was proved by laboratory experiments. The research provides an excellent base for further development of the ultrasonic pig.
基金Supported by National Natural Science Foundation of China(Grant No.U1737212)National Science and Technology Major Project of China(Grant No.J2019-VII-0014-0154)Shaanxi Provincial Natural Science Foundation for Distinguished Young Scholars of China(Grant No.2019JC-09).
文摘Compared with conventional forming processes,ultrasonic-assisted forming technology with a high frequency and small amplitude can significantly improve the forming quality of materials.Owing to the advantages of reduced forming force,improved surface quality,avoidance of forming defects,and strengthened surface structure,ultrasonic-assisted forming technology has been applied to increasingly advanced forming processes,such as incremental forming,spinning,and micro-forming.However,in the ultrasonic-assisted forming process,there are multiple ultrasonic mechanisms,such as the volume effect and surface effect.The explanation of the effect of ultrasonic vibration(UV)on plastic deformation remains controversial,hindering the development of related technologies.Recently,many researchers have proposed many new theories and technologies for ultrasonic-assisted forming.To summarize these developments,systematic discussions on mechanisms,theoretical models,and forming performances are provided in this review.On this basis,the limitations of the current study are discussed.In addition,an outlook for ultrasonic-assisted forming is proposed:efficient and stable UV systems,difficulty forming components with complex geometry,explanation of the in-depth mechanism,a systematic theoretical prediction model,and multi-field-coupling energy-assisted forming are considered to be hot spots in future studies.The present review enhances existing knowledge of ultrasonic-assisted forming,and facilitates a fast reference for related researchers.
基金Supported by National Key Research and Development Project(Grant No.2018YFC1902400)Natural Science Foundation of Shanghai(Grant No.20ZR1415300).
文摘At present,there are many studies on the residual stress field and plastic strain field introduced by surface strengthening,which can well hinder the initiation of early fatigue cracks and delay the propagation of fatigue cracks.However,there are few studies on the effects of these key factors on fretting wear.In the paper,shot-peening(SP)and ultrasonic surface rolling process(USRP)were performed on Ti-6Al-4V plate specimens.The surface hardness and residual stresses of the material were tested by vickers indenter and X-ray diffraction residual stress analyzer.Microhardness were measured by HXD-1000MC/CD micro Vickers hardness tester.The effects of different surface strengthening on its fretting fatigue properties were verified by fretting fatigue experiments.The fretting fatigue fracture surface and wear morphology of the specimens were studied and analyzed by means of microscopic observation,and the mechanism of improving fretting fatigue life by surface strengthening process was further explained.After USRP treatment,the surface roughness of Ti-6Al-4V is significantly improved.In addition,the microhardness of the specimen after SP reaches the maximum at 80μm from the surface,which is about 123%higher than that of the AsR specimen.After USRP,it reaches the maximum at 150μm from the surface,which is about 128%higher than that of AsR specimen.It is also found that the residual compressive stress of the specimens treated by USRP and SP increases first and then decreases with the depth direction,and the residual stress reaches the maximum on the sub surface.The USRP specimen reaches the maximum value at 0.18 mm,about−550 MPa,while the SP specimen reaches the maximum value at 0.1 mm,about−380 MPa.The fretting fatigue life of Ti-6Al-4V effectively improved after USRP and SP.The surface integrity of specimens after USRP is the best,which has deeper residual compressive stress layer and more refined grain.In this paper,a fretting wear device is designed to carry out fretting fatigue experiments on specimens with different surface strengthening.
基金This work has been supported by the Flu,tda~ion Of harbin institute of Technology for Out standing YOungScientists (No. 1832).
文摘A hypereutectic Al-Si alloy powder was prepared by ultrasonic gas atomization process. The morphologies, microstructure and phase constituent of the alloy powder were studied. The results showed that powder of the alloy was very fine and its microstructure was mainly consisted of Si crystals plus intermetallic compound A19FeSi3, which were.very fine and uniformly distributed.
文摘A plate's internal quality is very critical, especially for boilers and high-pressure vessels. The ultrasonic test (UT) is the main type of non-destructive flaw detection for heavy plates, which is important because one of the main reasons for plate defects is ultrasonic flaws. This study, based on Baosteel' s practical experience in the manufacture of heavy plates, elucidates the cause of defect formation by analyzing ultrasonic flaw testing maps and using special equipment, such as the scanning electron microscope, electron probe and the optical microscope. The author puts forward the following improvement measures: ① Ultrasonic flaws are caused by central porosity and segregation,[H] bubbles and inclusion in slabs.②Ultrasonic flaws are more likely to occur in the bottom and top of slabs rather than the other positions in the casting sequence. It is clear that one-quarter of the inner camber' s thickness is accumulated inclusion.③It is clear that overheating in the tundish and the flow of the casting mould have an effect on ultrasonic flaws caused by inclusions.④Soft reduction improves central porosity and segregation,which decreases the number of ultrasonic flaws in the plate.
基金Sponsored by Liaoning Innovation Team Fundation(2008T164)
文摘Based on impulse and vibration machining theories,a mathematical model of cutting force for the electroplated diamond ultrasonic wire saw was established using superposition principle.The differences between the cutting forces with and without ultrasonic effect were analyzed theoretically and experimentally.The results indicate that the cutting force of diamond wire increases along with the spindle speed decrease and the lateral pressure increase.The force in ultrasonic vibration cutting is about 20% to 30% less than that in conventional cutting.Also,the cutting trajectory of single diamond grit in sawing process is simulated,and the reason that the ultrasonic vibration can reduce the cutting force is explained further.
基金financially supported by the Fundamental Research Funds for the Central Universities(2572016CB11 and 2572014CB35)Natural Science Foundation of Heilongjiang Province(F2015036 and QC2014C010)948 Project(2014-4-78)
文摘The primary bottleneck to extracting wood defects during ultrasonic testing is the accuracy of identifying the wood defects. The wavelet energy moment was used to extract defect features of artificial wood holes drilled into 120 elm samples that differed in the number of holes to verify the validity of the method. Wavelet energy moment can reflect the distribution of energy along the time axis and the amount of energy in each frequency band,which can effectively extract the energy distribution characteristics of signals in each frequency band; therefore,wavelet energy moment can replace the wavelet frequency band energy and constitute wood defect feature vectors. A principal component analysis was used to normalize and reduce the dimension of the feature vectors. A total of 16 principal component features were then obtained, which can effectively extract the defect features of the different number of holes in the elm samples.
基金the National Key R&D Program of China(Nos.2017YFA0205103 and 2018YFE020505)the National Natural Science Foundation of China(Nos.81571766 and 61771337)+1 种基金the Natural Science Foundation of Tianjin,China(No.17JCYBJC24400)the“111”Project of China(No.B07014).
文摘An air parametric array can generate a highly directional beam of audible sound in air,which has a wide range of applications in targeted audio delivery.Capacitive micromachined ultrasonic transducer(CMUTs)have great potential for air-coupled applications,mainly because of their low acoustic impedance.In this study,an air-coupled CMUT array is designed as an air parametric array.A hexagonal array is proposed to improve the directivity of the sound generated.A finite element model of the CMUT is established in COMSOL software to facilitate the choice of appropriate structural parameters of the CMUT cell.The CMUT array is then fabricated by a wafer bonding process with high consistency.The performances of the CMUT are tested to verify the accuracy of the finite element analysis.By optimizing the component parameters of the bias-T circuit used for driving the CMUT,DC and AC voltages can be effectively applied to the top and bottom electrodes of the CMUT to provide efficient ultrasound transmission.Finally,the prepared hexagonal array is successfully used to conduct preliminary experiments on its application as an air parametric array.
基金supported by the National Natural Science Foundation of China(10772086 and 10727201)the National University of Singapore(R-265-000-140-112)
文摘This paper presents a novel non-contact method for evaluating the resonant frequency of a microstructure, Firstly, the microstructure under test is excited by ultrasonic waves. This excitation method does not impose any undefined load on the specimen like the electrostatic excitation and also this is the first actual use of ultrasonic wave for exciting a microstructure in the literature. Secondly, the amplitudes of the microstructure are determined by image edge detection using a Mexican hat wavelet transform on the vibrating images of the microstructure. The vibrating images are captured by a CCD camera when the microstructure is vibrated by ultrasonic waves at a series of discrete high frequencies (〉30 kHz). Upon processing the vibrating images, the amplitudes at various excitation frequencies are obtained and an amplitude-frequency spectrum is obtained from which the resonant frequency is subsequently evaluated. A micro silicon structure consisting of a perforated plate (192 × 192 μm) and two cantilever beams (76 × 43 μm) which is about 4 μm thickness is tested. Since laser interferometry is not required, thermal effects on a test object can be avoided. Hence, the setup is relatively simple. Results show that the proposed method is a simple and effective approach for evaluating the dynamic characteristics of microstructures.
基金Project (No. PRC 03-41/2003) supported by the Ministry of Con-struction of Cuba
文摘In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti- mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.
文摘In this paper the system for simulation, measurement and processing in graphical user interface implementa- tion is presented. The received signal from the simulation is compared to that of an actual measurement in the time domain. The comparison of simulated, experimental data clearly shows that acoustic wave propaga- tion can be modeled. The feasibility has been demonstrated in an ultrasound transducer setup for material property investigations. The results of simulation are compared to experimental measurements. Results ob- tained fit some much with those found in experiment and show the validity of the used model. The simula- tion tool therefore provides a way to predict the received signal before anything is built. Furthermore, the use of an ultrasonic simulation package allows for the development of the associated electronics to amplify and process the received ultrasonic signals. Such a virtual design and testing procedure not only can save us time and money, but also provide better understanding on design failures and allow us to modify designs more efficiently and economically.
基金This project is supported by returned specialists fund of China National Coal Corporation
文摘The experimental installation and measurement system of ultrasonic wave property in rocks during complete stress-strain process were established and perfected. The interrelations between ultrasonic wave property of muds tone, sands tone and limestone specimens during complete stress-strain process and their mechanic property were investigated. A new type of device for the observation of surrounding rock stability-borehole ultrasonic device with completely dry coupling was developed to get better coupling and more accurate measurement data comparing with those of water coupling situation. Preliminary study on the application of ultrasonic measurement technique at belt conveyor roadway of north wing in Baodian Coal Mine (Shandong province) was conducted. Based on the interrelations between the complete stress-strain properties of specimens and their wave properties, the structural properties of surrounding rocks, the range of yield zones, and the change of stresses within surrounding rocks when a longwall face was across over the roadway were analyzed.Therefore,a new and feasible way was found for the research on the deformation law of surrounding rock of roadway and rational selection of support parameters.
基金Sponsored by Zhejiang Province Scientific and Technological Key Task Program (2007C21025)Ningbo Science and Technological Key Task Program (2007B10010)
文摘Magnetic liquid can produce alternative internal pressure under the alternative high-frequency gradient magnetic field.Because it has higher bulk modulus,the internal pressure results in its volume change.Using piezoelectric transducers,the ultrasonic wave generated by the vibration of magnetic liquids can be detected,which shows that the magnetic liquids have the magnetostrictive effect and can generate the ultrasonic vibration under the alternative magnetic gradient field.Some nonmagnetic abrasives and rust-proofing agents can be mixed into the magnetic liquids,under the alternative magnetic field,the abrasives held by magnetic liquids grind the surface of the workpieces,and thus,the finishing for the surface with complex shape,mold cavity and inner wall of tiny tubes can be realized.
文摘Separating noise from observed signals was studied.When the small defect in the T-shape laser welding joint was inspected by ultrasonic testing system adopting independent component analysis(ICA) theory to process the signals.The principle of automatic ultrasonic testing signals processing and negentropy law of ICA were introduced.The experimental data were processed using relative analysis tools and results showed that the ICA could separate defects signals from noise effectively in laboratory.
文摘In order to realize automatic weld seam tracking for pipeline ultrasonic flaw inspection, an image processing algorithm based on HSI color space was presented. Since the color tones of weld seam were different from the parent metal, weld seam images were transformed to HSI color space. In the HSl colar space, the weld seam and base metal area can be apparently distinguished. By using this image processing algorithm, the edges and centerline of pipeline weld seam can be correctly extracted. An industrial application system was developed based on the image processing algorithm, and the image processing time is less than 70 ms and the accuracy of weld seam recognition is better than 2mm.
基金supported by The Natural Science Foundation of China(50975265)The Natural Science Foundation of Shanxi Province of China(2007011071)Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi(20080205ZX)
文摘The mechanism of ultrasonic vibration honing Nd-Fe-B has been briefly elaborated after the introduction of the strategic significance of processing Nd-Fe-B. Based on the formation principle of Scanning Electrtmic Microscope (SEM), and at the examination with the aid of SEM to the ultrasonic vibration honing Nd-Fe-B material's superficial microscopic topography, the paper discusses the new processing nechanism according to the SEM examination picture. The research indicates that as a result of supersonic high frequency vibration, the path of the abrasion extends at the same time, and the supersonic cavitation effect forms the intense shock-wave, knpacting Nd-Fe-B material's intemal surface, providing the supersonic energy for the superticial abrasive dust's dimination, which directly explain that the honing processing efficiency is enhanced, and the processing surface roughness is high.
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000and No.2020YFA0714001the National Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2020J003 and No.ZYGX2020ZB007。
文摘Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bottom surface of graphene is also inevitable;therefore, cleaning the bottom surface is crucial. In this study, we proposed an improved graphene wet transfer method using an ultrasonic processing(UP) step for etching copper(Cu). Using this method, the bottom surface can be cleaned efficiently. The results of atomic force microscopy(AFM)and Raman spectroscopy mapping revealed that the graphene films transferred with UP had smoother and cleaner surfaces, less contamination, and higher quality than those transferred without UP.