期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Numerical Study on the Stress–Strain Cycle of Thermal Self-Compressing Bonding 被引量:3
1
作者 Yun-Hua Deng Qiao Guan +1 位作者 Jun Tao Bing Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第4期140-147,共8页
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove... Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding. 展开更多
关键词 Thermal self-compressing bonding Locally non-melted heating Thermal elasto-plastic stress–strain Atom diffusion solid-state bonding Finite element analysis
下载PDF
Isolated Solid-State Packaging Technology of High-Temperature Pressure Sensor
2
作者 张生才 金鹏 +2 位作者 姚素英 赵毅强 曲宏伟 《Transactions of Tianjin University》 EI CAS 2003年第4期264-268,共5页
The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphrag... The principle of miniature isolated solid-state encapsulation technology of high-temperature pressure sensor and the structure of packaging are discussed, including static electricity bonding, stainless steel diaphragm selection and rippled design, laser welding, silicon oil infilling, isolation and other techniques used in sensor packaging, which can affect the performance of the sensor. By adopting stainless steel diaphragm and high-temperature silicon oil as isolation materials, not only the encapsulation of the sensor is as small as 15 mm in diameter and under 1 mA drive, its full range output is 72 mV and zero stability is 0.48% F.S/mon, but also the reliability of the sensor is improved and its application is widely broadened. 展开更多
关键词 high-temperature pressure sensor static electricity bonding isolated solid-state silicon oil infilling
下载PDF
Diffusion behavior at void tip and its contributions to void shrinkage during solid-state bonding 被引量:4
3
作者 C.Zhang M.Q.Li H.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1449-1454,共6页
Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, bu... Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, but for similar bonding the diffusion behavior has yet been observed via experiments. In this study, the diffusion behavior at void tip was firstly observed during similar bonding of stainless steel. Scanning electron microscopy with energy dispersive spectroscopy was used to examine the interface charac- teristic and diffusion behavior. The results showed that a diffusion region was discovered at void tip. Element concentrations of diffusion region were more than those of void region, but less than those of bonded region. This behavior indicated that the diffusion was ongoing at void tip, but the perfect bond has yet formed. The diffusion region was attributed to the interface diffusion from adjacent region to void tip due to the stress gradient along bonding interface. The mass accumulation at void tip transformed the sharp void tip into smooth one at the beginning of void shrinkage, and then resulted in shorter voids. 展开更多
关键词 Stainless steel Micro-void morphology solid-state bonding Void tip Element diffusion
原文传递
A Novel Porphyrin-based Hydrogen-bonded Organic Framework 被引量:2
4
作者 LIYu-Lin YIN Qi +2 位作者 LIU Tian-Fu CAO Rong YUAN Wen-Bing 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第12期2083-2088,共6页
A novel hydrogen-bonded organic framework, HOF-TCPP(HOF = hydrogen bonded organic framework, TCPP = tetrakis(4-carboxyphenyl) porphyrin), has been synthesized via solvothermal reaction in ethylene glycol. Crystal stru... A novel hydrogen-bonded organic framework, HOF-TCPP(HOF = hydrogen bonded organic framework, TCPP = tetrakis(4-carboxyphenyl) porphyrin), has been synthesized via solvothermal reaction in ethylene glycol. Crystal structure was well determined by single-crystal X-ray diffraction and powder X-ray diffraction(PXRD). Topological analysis reveals that HOF-TCPP exhibits sql 2D layer and features 2D → 3D polycatenation. Fluorescence investigation shows that HOF-TCPP displays much higher photoluminescence(PL) intensity than the amorphous ligands TCPP, which can be ascribed to the crystalline structure and hydrogen bonds existing in the structure. 展开更多
关键词 PORPHYRIN hydrogen bonded organic framework solid-state fluorescence property
下载PDF
Disulfide Crosslinking-Induced Aggregation:Towards Solid-State Fluorescent Carbon Dots with Vastly Different Emission Colors 被引量:2
5
作者 Rui Fu Haoqiang Song +5 位作者 Xingjiang Liu Yongqiang Zhang Guanjun Xiao Bo Zou Geoffrey I.N.Waterhouse Siyu Lu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第9期1007-1014,共8页
Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a mi... Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a microwave-assisted strategy for the prepara-tion of SFM-CDs with blue,yellow and red emissions within 5 min from the same precursors.The as-prepared B-CDs,Y-CDs,and R-CDs possessed bright fluorescence at 425 nm,550 nm,and 640 nm,and photoluminescence quantum yields(PLQYs)of 54.68%,17.93%,and 2.88%,respectively.The structure of SFM-CDs consisted of 5-oxo-3,5-dihydro-2H-thiazolo[3,2-a]pyridine-7-carboxylic acid(TPCA)immobilized on the surface of a carbon core,with the size of the carbon core and degree of disulfide crosslinking between CDs both increasing on going from the B-CDs to the R-CDs,as verified by mechanochromic experiments.The excellent solid-state fluorescence performance of the SFM-CDs allowed their utilization as the fluorescent converter layer in multi-color LEDs and white LEDs with a high color rendering index. 展开更多
关键词 solid-state fluorescence MULTICOLOR Cross-linked aggregation Disulfide bond Carbon dots
原文传递
Al 1060/Pure Iron Clad Materials by Vacuum Roll Bonding and Their Solderability 被引量:2
6
作者 Qian Wang Xuesong Leng +3 位作者 Jiuchun Yan Weibing Guo Yu Fu Tianming Luan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第10期948-954,共7页
Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength... Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature. 展开更多
关键词 Al 1060/pure iron clad materials Vacuum roll bonding bonding strength ultrasonic-assisted soldering
原文传递
Friction self-piercing riveting(F-SPR)of aluminum alloy to magnesium alloy using a flat die 被引量:1
7
作者 Bingxin Yang Yunwu Ma +2 位作者 He Shan Sizhe Niu Yongbing Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1207-1219,共13页
Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 s... Friction self-piercing riveting(F-SPR)process based on a pip die has been invented to solve the cracking problems in riveting high-strength and low-ductility light metals,such as magnesium alloys,cast aluminum,and 7 series aluminum alloys.In this paper,in order to solve quality issues caused by the misalignment between rivet and pip-die in F-SPR,a flat-die based F-SPR process was proposed and employed to join 1.27 mm-thick AA6061-T6 to 3 mm-thick AZ31B.The results indicate that a 1.0 mm die distance is effective to avoid rivet upset and insufficient flaring.As the feed rate increases,the heat input in the whole process decreases,resulting in a larger riveting force,which in turn increases both the bottom thickness and interlock amount.Besides,solid-state bonding,including Al-Mg intermetallic compounds(IMCs),Al-Mg mechanical mixture,and Al-Fe atom interdiffusion was observed at the joint interfaces.The upper Al layer was softened,but the lower Mg layer was hardened,and both sheets exhibited a narrowed affected region with the increase of feed rate,while the rivet hardness shows no obvious change.Three fracture modes appeared accompanying the variations in lap-shear strength and energy absorption as the feed rate increased from 2 mm/s to 8 mm/s.Finally,the F-SPR process using a flat die was compared to those using a pip die and a flat bottom die to show the advantage of flat die on coping with the misalignment problem. 展开更多
关键词 Friction self-piercing riveting(F-SPR) Flat die Aluminum alloy Magnesium alloy Mechanical joining solid-state bonding
下载PDF
Shock effects on the upper limit of the collision weld process window
8
作者 Blake Barnett Anupam Vivek Glenn Daehn 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第2期365-378,共14页
The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows.Thus,the upper limit of the weld window is governed b... The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows.Thus,the upper limit of the weld window is governed by the evolution of dynamic stresses and temperatures at the weld interface.Current formulations for the upper limit of the collision weld window assume that both the flyer and target are made of the same material and approximate stress propagation velocities using the acoustic velocity or the shear wave velocity of the weld material.However,collision welding fundamentally depends on the impacts that generate shockwaves in weld members,which can dominate the stress propagation velocities in thin weld sections.Therefore,this study proposes an alternative weld window upper limit that approximates stress propagation using shock velocities calculated from modified 1-D Rankine-Hugoniot relations.The shock upper limit is validated against the experimental and simulation data in the collision welding literature,and offers a design tool to rapidly predict more accurate optimal collision weld process limits for similar and dissimilar weld couples compared to existing models without the cost or complexity of high-fidelity simulations. 展开更多
关键词 Collision welding solid-state welding Shock impact Weld process modelling Explosive bonding Laser impulse welding(LIW)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部