Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joi...Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals.展开更多
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to...The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.展开更多
The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro...The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.展开更多
Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming ...Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.展开更多
Jujube contains abundant cyclic adenosine monophosphate(cAMP)and the ultrasonic-assisted pectinase extraction(UAPE)conditions for obtaining the maximum cAMP yield from jujube were optimized.Orthogonal array design was...Jujube contains abundant cyclic adenosine monophosphate(cAMP)and the ultrasonic-assisted pectinase extraction(UAPE)conditions for obtaining the maximum cAMP yield from jujube were optimized.Orthogonal array design was applied to evaluate the effects of 4 variables by UAPE on cAMP yield.The results showed that the optimal cAMP yield(783.0μg/g)was derived at ratio of liquid to solid 5 mL/g,ratio of pectinase to raw material 1.5%,time 60 min and temperature 40℃.Moreover,the effect of cAMP on the anti-allergic function of action induced by immunoglobulin E(IgE)and its meschanism was investigated through establishing the sensitized cell model in rat basophilic leukemia(RBL-2 H3)cells using dinitrophenylated(DNP)-bovine serum albumin(BSA)-IgE.The results showed that cAMP interfered with sensitized cells,effectively inhibited the occurrence of basophil degranulation in dose dependence,and significantly reduced the activity ofβ-hexosamindase(β-hex),at the optimal concentration of 50μg/mL.The level of anti-inflammatory factor interleukin-10(IL-10)was promoted and the content of pro-inflammatory factor tumor necrosis factor-α(TNF-α)was suppressed by cAMP.In addition,influx of intracellular Ca^(2+) was repressed effectively.Our results demonstrate that jujube cAMP regulated the cytokine balance in the allergy pathway through blocking the influx of extracellular Ca^(2+),with the prevention of allergy symptoms.展开更多
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma...The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.展开更多
A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering beha...A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions.展开更多
To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to char...To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.展开更多
Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The u...Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.展开更多
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorol...The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.展开更多
Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawin...Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau.展开更多
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin...Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions.展开更多
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o...In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.展开更多
A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liqui...A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods.展开更多
The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the propert...The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the properties of clay soils that form the railway are from hydration, fieeze-thaw cycles and vibrodynamic impact of Wains. The increase in soil moisture is due to infillration of water into the ground, as well as the rise in water level due to soil redistribution during winter freezes. This can dramatically alter the basic characteristics of the soil, such as shear resistance and bulk density, on which strength and stability of soil mass depend primarily. Therefore, the degree of railway bed stability is not constant, but varies with time.展开更多
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e...It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.展开更多
Ultrasonic-assisted extraction (UAE) of American ginseng polysaccharides (AGP) was investigated using response surface methodology. Three-factor-three-level Box-Behnken design was employed to optimize the ultrason...Ultrasonic-assisted extraction (UAE) of American ginseng polysaccharides (AGP) was investigated using response surface methodology. Three-factor-three-level Box-Behnken design was employed to optimize the ultrasonic power, extraction time and ratio of water to raw material to obtain a high AGP yield. The analysis of variance and response surface plots indicated that ultrasonic power was the most important factor affecting the extraction yield. The optimal conditions were ultrasonic power 400 W, extraction time 71 min, and ratio of water to raw material 33 mL g-1. Under these conditions, the yield of AGP was 8.09%, which was agreed closely to the predicted value. Gas chromatography (GC) analysis showed that AGP was composed of arabinose, rhamnose, galactose, glucose, and galacturonic acid. Fourier transform infrared spectra revealed the general characteristic absorption peaks of AGP. In addition, AGP exhibited good immunostimulating activities by up-regulating the production of nitric oxide and cytokines. Compared with hot water extraction, UAE required shorter extraction time and gave a higher extraction yield, without changing the structure and immunostimulating activity of AGP. The results indicated that UAE could be an effective and advisable technique for the large scale production of plant polysaccharides.展开更多
The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of intern...The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed.展开更多
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water conten...Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.展开更多
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
基金financial support from the National Natural Science Foundation of China(grant numbers 52275385 and U2167216)the Sichuan Province Science and Technology Support Program(grant number 2022YFG0086)。
文摘Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals.
文摘The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.
基金This work was jointly funded by the National Natural Science Foundation of China(Grant Nos.42205168,41830967,and 42175163)the Youth Innovation Promotion Association CAS(2021073)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41905008, 41975007, and 42075081)the Innovation and Entrepreneurship Training Program for College Students of Chengdu University of Information Technology (CUIT) (202210621003, 202210621039, 202110621015)provided by the Scientific Research Foundation of CUIT (KYTZ202126)
文摘Since the 1990s,the Qinghai–Tibetan Plateau(QTP)has experienced a strikingly warming and wetter climate that alters the thermal and hydrological properties of frozen ground.A positive correlation between the warming and thermal degradation in permafrost or seasonally frozen ground(SFG)has long been recognized.Still,a predictive relationship between historical wetting under warming climate conditions and frozen ground has not yet been well demonstrated,despite the expectation that it will become even more important because precipitation over the QTP has been projected to increase continuously in the near future.This study investigates the response of the thermal regime to historical wetting in both permafrost and SFG areas and examines their relationships separately using the Community Land Surface Model version 4.5.Results show that wetting before the 1990s across the QTP mainly cooled the permafrost body in the arid and semiarid zones,with significant correlation coefficients of 0.60 and 0.48,respectively.Precipitation increased continually at the rate of 6.16 mm decade–1 in the arid zone after the 1990s but had a contrasting warming effect on permafrost through a significant shortening of the thawing duration within the active layer.However,diminished rainfall in the humid zone after the 1990s also significantly extended the thawing duration of SFG.The relationship between the ground thawing index and precipitation was significantly negatively correlated(−0.75).The dual effects of wetting on the thermal dynamics of the QTP are becoming critical because of the projected increases in future precipitation.
基金supported by grant from the National Key Research and Development Program of China(2018YFC1602201)the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development,Beijing Technology and Business University(PRRD-2021-YB8)+1 种基金the National Natural Science Fund(31601395)the Key Program for Shaanxi Science and Technology(2020NY-146)。
文摘Jujube contains abundant cyclic adenosine monophosphate(cAMP)and the ultrasonic-assisted pectinase extraction(UAPE)conditions for obtaining the maximum cAMP yield from jujube were optimized.Orthogonal array design was applied to evaluate the effects of 4 variables by UAPE on cAMP yield.The results showed that the optimal cAMP yield(783.0μg/g)was derived at ratio of liquid to solid 5 mL/g,ratio of pectinase to raw material 1.5%,time 60 min and temperature 40℃.Moreover,the effect of cAMP on the anti-allergic function of action induced by immunoglobulin E(IgE)and its meschanism was investigated through establishing the sensitized cell model in rat basophilic leukemia(RBL-2 H3)cells using dinitrophenylated(DNP)-bovine serum albumin(BSA)-IgE.The results showed that cAMP interfered with sensitized cells,effectively inhibited the occurrence of basophil degranulation in dose dependence,and significantly reduced the activity ofβ-hexosamindase(β-hex),at the optimal concentration of 50μg/mL.The level of anti-inflammatory factor interleukin-10(IL-10)was promoted and the content of pro-inflammatory factor tumor necrosis factor-α(TNF-α)was suppressed by cAMP.In addition,influx of intracellular Ca^(2+) was repressed effectively.Our results demonstrate that jujube cAMP regulated the cytokine balance in the allergy pathway through blocking the influx of extracellular Ca^(2+),with the prevention of allergy symptoms.
基金supported by Shandong Provincial Natural Science Foundation (grant number: ZR2023MD036)Key Research and Development Project in Shandong Province (grant number: 2019GGX101064)project for excellent youth foundation of the innovation teacher team, Shandong (grant number: 2022KJ310)。
文摘The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP.
基金supported by the National Natural Science Foundation of China(Grant No.41672295)the Major Systematic Project of Scientific and Technological Research and Development Plan of China Railway Corporation(Grant No.P2018G047)supported by a PhD fellowship from the China Scholarship Council.Roberto Tomás was partially funded by the Conselleria de Innovación,Universidades,Ciencia y Sociedad Digital de la Generalitat Valenciana(CIAICO/2021/335).
文摘A growing rock engineering activity in cold regions is facing the threat of freeze-thaw(FT)weathering,especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks.In this paper,an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented.To this aim,non-destructive and repeatable testing techniques including weight,ultrasonic waves,and nuclear magnetic resonance methods on standard specimens were performed.For the sunny slope specimens,accompanied by the enlargement of small pores,100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%,but a consistent rise of 0.18%in mass loss,34%in porosity,67%in pore geometrical mean radius,and a remarkable 14.5-fold increase in permeability.However,slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling,which can be attributed to superficial granular disaggregation and pore throat obstruction.Thermal shocks enhance rock weathering on sunny slopes during FT cycles,while FT weathering on shady slopes is restricted to the small pores and the superficial cover.These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes.The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions.
基金supported by the National Natural Science Foundation of China(Project No.52074123).
文摘To explore the effects of freeze‒thaw cycles on the mechanical properties and crack evolution of fissured sandstone,biaxial compression experiments were carried out on sandstone subjected to freeze‒thaw cycles to characterize the changes in the physical and mechanical properties of fissured sandstone caused by freeze‒thaw cycles.The crack evolution and crack change process on the surface of the fissured sandstone were recorded and analysed in detail via digital image technology(DIC).Numerical simulation was used to reveal the expansion process and damage mode of fine-scale cracks under the action of freeze‒thaw cycles,and the simulation results were compared and analysed with the experimental data to verify the reliability of the numerical model.The results show that the mass loss,porosity,peak stress and elastic modulus all increase with increasing number of freeze‒thaw cycles.With an increase in the number of freeze‒thaw cycles,a substantial change in displacement occurs around the prefabricated cracks,and a stress concentration appears at the crack tip.As new cracks continue to sprout at the tips of the prefabricated cracks until the microcracks gradually penetrate into the main cracks,the displacement cloud becomes obviously discontinuous,and the contours of the displacement field in the crack fracture damage area simply intersect with the prefabricated cracks to form an obvious fracture.The damage patterns of the fractured sandstone after freeze‒thaw cycles clearly differ,forming a symmetrical"L"-shaped damage pattern at zero freeze‒thaw cycles,a symmetrical"V"-shaped damage pattern at 10 freeze‒thaw cycles,and a"V"-shaped damage pattern at 20 freeze‒thaw cycles.After 20 freeze‒thaw cycles,a"V"-shaped destruction pattern and"L"-shaped destruction pattern are formed;after 30 freeze‒thaw cycles,an"N"-shaped destruction pattern is formed.This shows that the failure mode of fractured sandstone gradually becomes more complicated with an increasing number of freeze‒thaw cycles.The effects of freeze‒thaw cycles on the direction and rate of crack propagation are revealed through a temperature‒load coupled model,which provides an important reference for an in-depth understanding of the freeze‒thaw failure mechanisms of fractured rock masses.
基金Projects(51075104,50975054) supported by the National Natural Science Foundation of ChinaProject(2010RFQXG020) supported by the Harbin Excellence Talents Program,China
文摘Ultrasonic-assisted soldering of 2024 aluminum alloys using a filler metal of Zn-5Al alloy was investigated at the temperature of 400 ℃,which is lower than the solution strengthening temperature of Al-Cu alloys.The ultrasonic vibration with power of 200 W and vibration amplitude of 15 μm at the frequency of 21 kHz was applied on the top samples.The ultrasonic vibration promoted the dissolution of Al elements in the base metal.The reduction of volume fraction of the eutectic phases in the bonds was investigated by increasing ultrasonic vibration time.As the ultrasonic vibration time increased from 3 s to 30 s,the volume fraction of the eutectic phase in the bonds decreased from 12.9% to 0.9%,and the shear strength of the joints was up to 149-153 MPa,increased by 20%.The improvement of the mechanical properties of joints was discussed based on the modulus and hardness of the phases in the bonds and the fracture of the joints.
基金This work was supported jointly by the Key Innovation Project of the Chinese Academy of Sciences(Grant No.ZKCX2-SW-210)the National Natural Science Foundation of the China(Grant Nos.40375033 and 40175020)the Key National Natural Science Foundation of China(Grant Nos.40231005).
文摘The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data. Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999, which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitation increases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.
基金funded by the National Science and Technology Support Plan(2015BAD07B02)
文摘Freezing and thawing indices are not only of great significance for permafrost research but also are important indicators of the effects of climate change.However,to date,research on ground-surface freezing and thawing indices and their relationship with air indices is limited.Based on daily air and ground-surface temperatures collected from 11 meteorological stations in the source region of the Yellow River,the freezing and thawing indices were calculated,and their spatial distribution and trends were analyzed.The air-freezing index(AFI),air-thawing index(ATI),ground surface-freezing index(GFI),ground surface-thawing index(GTI),air thawing-freezing index ratio(Na)and surface ground thawing-freezing index ratio(Ng)were 1554.64,1153.93,1.55,2484.85,850.57℃-days and 3.44,respectively.Altitude affected the spatial distribution of the freezing and thawing indices.As the altitude increased,the freezing indices gradually increased,and the thawing indices and thawing-freezing index ratio decreased.From 1980 to 2014,the AFI and GFI decreased at rates of 8.61 and 11.06℃-days a^(-1),the ATI and GTI increased at 9.65 and 14.53℃-days a^(-1),and Na and Ng significantly increased at 0.21 and 0.79 decade^(-1).Changes in the freezing and thawing indices were associated with increases in the air and ground-surface temperatures.The rates of change of the ground surface freezing and thawing indices were faster than the air ones because the rate of increase of the groundsurface temperature was faster than that of the air and the difference between the ground surface and air increased.The change point of the time series of freezing and thawing indices occurred in 2000–2001.After 2000–2001,the AFI and GFI were lower than before the change point,and the changing trend was lower.The ATI,GTI,Na and Ng during 2001–2014 were higher,with faster rates than before.In addition,the annual thawing indices composed a greater proportion of the mean annual air temperature and mean annual ground surface temperature than the annual freezing indices.This study provides the necessary basis for research on and prediction of permafrost changes,especially changes in the depth of the active permafrost layer,climate change,and possible evolution of the ecological environment over the source region of the Yellow River on the Qinghai-Tibet Plateau.
基金Funded by the Key Program of National Natural Science Foundation of China (No.50438010)
文摘Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions.
基金Supported by the Key Technologies R&D Program of China(2016YFD0501402)
文摘In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.
基金supported by the National Basic Research Program of China under Grant No 2006CB400504National Natural Science Foundation of China under Grant Nos 40605027 and 40775050
文摘A frozen soil parameterization coupling of thermal and hydrological processes is used to investigate how frozen soil processes affect water and energy balances in seasonal frozen soil. Simulation results of soil liquid water content and temperature using soil model with and without the inclusion of freezing and thawing processes are evaluated against observations at the Rosemount field station. By comparing the simulated water and heat fluxes of the two cases, the role of phase change processes in the water and energy balances is analyzed. Soil freezing induces upward water flow towards the freezing front and increases soil water content in the upper soil layer. In particular, soil ice obviously prevents and delays the infiltration during rain at Rosemount. In addition, soil freezingthawing processes alter the partitioning of surface energy fluxes and lead the soil to release more sensible heat into the atmosphere during freezing periods.
文摘The practice of building and operating of railroad beds shows that the greatest attenuation of soils occurs in the spring, during their Iransifion from the frozen to thawed state. The geatest influences on the properties of clay soils that form the railway are from hydration, fieeze-thaw cycles and vibrodynamic impact of Wains. The increase in soil moisture is due to infillration of water into the ground, as well as the rise in water level due to soil redistribution during winter freezes. This can dramatically alter the basic characteristics of the soil, such as shear resistance and bulk density, on which strength and stability of soil mass depend primarily. Therefore, the degree of railway bed stability is not constant, but varies with time.
基金supported by the National Natural Science Foundation of China (No. 41371092)the Scientific Research Foundation for Returned Overseas Students+1 种基金the Education Department of Henan Province Science and Technology Research projects (No.14B170007)the doctoral foundation of Henan Polytechnic University (No. 648349)
文摘It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.
基金financially supported by the International Science & Technology Cooperation Program of China (2011DFG32500)the Sci & Tech Innovation Program of CAAS
文摘Ultrasonic-assisted extraction (UAE) of American ginseng polysaccharides (AGP) was investigated using response surface methodology. Three-factor-three-level Box-Behnken design was employed to optimize the ultrasonic power, extraction time and ratio of water to raw material to obtain a high AGP yield. The analysis of variance and response surface plots indicated that ultrasonic power was the most important factor affecting the extraction yield. The optimal conditions were ultrasonic power 400 W, extraction time 71 min, and ratio of water to raw material 33 mL g-1. Under these conditions, the yield of AGP was 8.09%, which was agreed closely to the predicted value. Gas chromatography (GC) analysis showed that AGP was composed of arabinose, rhamnose, galactose, glucose, and galacturonic acid. Fourier transform infrared spectra revealed the general characteristic absorption peaks of AGP. In addition, AGP exhibited good immunostimulating activities by up-regulating the production of nitric oxide and cytokines. Compared with hot water extraction, UAE required shorter extraction time and gave a higher extraction yield, without changing the structure and immunostimulating activity of AGP. The results indicated that UAE could be an effective and advisable technique for the large scale production of plant polysaccharides.
文摘The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed.
基金supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW-330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966).
文摘Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.