The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegra...The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60%in H band under median seeing conditions of 1".Combined with our dedicated image rotation and subtraction(IRS)technique and the optimized IRS(O-IRS)algorithm,the averaged contrast ratio for a 5≤V_(mag)≤9 primary star is 1.3×10^(-5)and3.3×10^(-6)at angular distance of 0.36"with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet ofκAnd b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recoveredκAnd b planet,which gives a projected separation of 0.98"±0.05",a position angle of 51.1°±0.5°and a mass of 10.15_(-1.255)^(+2.19) MJup.These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes.展开更多
The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative...The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative options used in spinal fixation and fusion procedures, especially in his or her institute. This is critical in evaluating the position of implants and potential complications associated with the operative approaches and spinal fixation devices used. Thus, the radiologist can play an important role in patient care and outcome. This review outlines the advantages and disadvantages of commonly used imaging methods and reports on the best yield for each modality and how to overcome the problematic issues associated with the presence of metallic hardware during imaging. Baseline radiographs are essential as they are the baseline point for evaluation of future studies should patients develop symptoms suggesting possible complications. They may justify further imaging workup with computed tomography, magnetic resonance and/or nuclear medicine studies as the evaluation of a patient with a spinal implant involves a multi-modality approach. This review describes imaging features of potential complications associated with spinal fusion surgery as well as the instrumentation used. This basic knowledge aims to help radiologists approach everyday practice in clinical imaging.展开更多
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve t...An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.展开更多
High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their b...High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light mod- ulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coron- agraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5A/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.展开更多
Quantitative and analytical analysis of the modulation process of the collimator is a great challenge,and is also of great value to the design and development of Fourier transform imaging telescopes.The Hard X-ray Ima...Quantitative and analytical analysis of the modulation process of the collimator is a great challenge,and is also of great value to the design and development of Fourier transform imaging telescopes.The Hard X-ray Imager(HXI),as one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S) mission,adopts modulating Fourier-Transformation imaging technique and will be used to explore the mechanism of energy release and transmission in solar flare activities.As an important step to reconstruct the images of solar flares,accurate modulation functions of HXI are needed.In this paper,a mathematical model is developed to analyze the modulation function under a simplified condition first.Then its behavior under six degrees of freedom is calculated after adding the rotation matrix and translation change to the model.In addition,unparalleled light and extended sources are also considered so that our model can be used to analyze the X-ray beam experiment.Next,applied to the practical HXI conditions,the model has been confirmed not only by Geant4 simulations but also by some verification experiments.Furthermore,how this model helps to improve the image reconstruction process after the launch of ASO-S is also presented.展开更多
High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffract...High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm^2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.展开更多
We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compa...We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compared to available sensors.Quantitative phantom and interference measurements showed that both methods can be combined without reciprocal adverse effects.The direct localization of the optical sensor on MR images acquired with a T1-weighted echo sequence simplifies the co-registration of NIRI and MRI data.In addition,the optical sensor is simple to attach,which is crucial for measurements on vulnerable subjects.The fNIRI and T2^(*)-weighted fMRI data of a cerebral activation were simultaneously acquired proving the practicability of the setup.展开更多
Tick-mark recognition is a key step for automatic reading of analog instrument with computer vision techniques which is called for in many automatic processes among industries. As many factors result in the tick-mark ...Tick-mark recognition is a key step for automatic reading of analog instrument with computer vision techniques which is called for in many automatic processes among industries. As many factors result in the tick-mark distortion in the sampled image such as the generally stained surface of instrument, or/and reflection and refraction of light, the accuracy and robustness of tick-mark reading are directly or indirectly weakened. Double image segmentation algorithm (DISA) is employed to solve this problem which make</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> coarse segmentation with structural parameters of instruments, and make</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> accurate segmentation with gray difference between tick-marks and their background. Tests have been conducted with 640 * 480 pixel industry camera and 4 kinds of pointer pressure meter, and the results show that read-out rate of tick-mark in pointer meter reached 100% at sufficient illumination and 76% at insufficient illumination for air packed instrument. In addition with oil packed instrument, DISA still experienced 64% recognition in comparison with 0 success record by Hough Transformation.展开更多
Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated thro...Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.展开更多
Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern co...Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11827804,U2031210)。
文摘The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60%in H band under median seeing conditions of 1".Combined with our dedicated image rotation and subtraction(IRS)technique and the optimized IRS(O-IRS)algorithm,the averaged contrast ratio for a 5≤V_(mag)≤9 primary star is 1.3×10^(-5)and3.3×10^(-6)at angular distance of 0.36"with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet ofκAnd b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recoveredκAnd b planet,which gives a projected separation of 0.98"±0.05",a position angle of 51.1°±0.5°and a mass of 10.15_(-1.255)^(+2.19) MJup.These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes.
文摘The interpretation of spinal images fixed with metallic hardware forms an increasing bulk of daily practice in a busy imaging department. Radiologists are required to be familiar with the instrumentation and operative options used in spinal fixation and fusion procedures, especially in his or her institute. This is critical in evaluating the position of implants and potential complications associated with the operative approaches and spinal fixation devices used. Thus, the radiologist can play an important role in patient care and outcome. This review outlines the advantages and disadvantages of commonly used imaging methods and reports on the best yield for each modality and how to overcome the problematic issues associated with the presence of metallic hardware during imaging. Baseline radiographs are essential as they are the baseline point for evaluation of future studies should patients develop symptoms suggesting possible complications. They may justify further imaging workup with computed tomography, magnetic resonance and/or nuclear medicine studies as the evaluation of a patient with a spinal implant involves a multi-modality approach. This review describes imaging features of potential complications associated with spinal fusion surgery as well as the instrumentation used. This basic knowledge aims to help radiologists approach everyday practice in clinical imaging.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 10873024 and 11003031)supported by the National Science Foundation under Grant ATM-0841440
文摘An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA04070600)the National Natural Science Foundation of China(Grant Nos.11003031 and 10873024)+1 种基金as well as the National Astronomical Observatories' Special Fund for Astronomy-2009Part of the work described in this paper was carried out at California State University Northridge,with support from the National Science Foundation under Grant ATM-0841440
文摘High-contrast imaging coronagraphs, used for the detection of exoplanets, have always adopted passive coronagraph optical components. It is therefore impossible to actively optimize the coronagraphs to achieve their best performance. To solve this problem, we propose a novel high-contrast imaging coronagraph which combines a liquid crystal array (LCA) for active pupil apodization and a deformable mirror (DM) for phase correction. The LCA we use is an amplitude-only spatial light mod- ulator. The LCA is well calibrated and compensates for its amplitude non-uniformity and nonlinear intensity responsivity. We measured the imaging contrasts of the coron- agraph system with the LCA only and without the DM deployed. Imaging contrasts of 10-4 and 10-5 can be reached at an inner working angular distance of 2.5 and 5A/D, respectively. A simulation shows that the phase errors on the coronagraph pupil limit the contrast performance. The contrast could be further improved if a DM is deployed to correct the phase errors induced by the LCA and coronagraph optics.
基金supported by the Strategic Priority Research Program on Space ScienceChinese Academy of Sciences(No.XDA 15320104)+2 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20200077)the National Natural Science Foundation of China(Nos.12173100,12022302,11803093 and 11973097)the Youth Innovation Promotion Association,CAS(No.2021317 and Y2021087)。
文摘Quantitative and analytical analysis of the modulation process of the collimator is a great challenge,and is also of great value to the design and development of Fourier transform imaging telescopes.The Hard X-ray Imager(HXI),as one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S) mission,adopts modulating Fourier-Transformation imaging technique and will be used to explore the mechanism of energy release and transmission in solar flare activities.As an important step to reconstruct the images of solar flares,accurate modulation functions of HXI are needed.In this paper,a mathematical model is developed to analyze the modulation function under a simplified condition first.Then its behavior under six degrees of freedom is calculated after adding the rotation matrix and translation change to the model.In addition,unparalleled light and extended sources are also considered so that our model can be used to analyze the X-ray beam experiment.Next,applied to the practical HXI conditions,the model has been confirmed not only by Geant4 simulations but also by some verification experiments.Furthermore,how this model helps to improve the image reconstruction process after the launch of ASO-S is also presented.
基金Supported by the National Natural Science Foundation of China.
文摘High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 × 50 μm^2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32arcsec above about 10keV and 0.36arcsec at 1.24keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed.
基金The authors gratefully acknowledge the support of the Swiss National Foundation(National Research Programme NRP 57)and like to thank Andreas Metz for his dedication.We thank Klaas Enno Stephan for supporting this study and Philips Healthcare for technical andfinancial support.We like to address special thanks to Elisabeth Moore from Philips Healthcare for providing and answering questions about the MRI stability test postprocessing software,to Dennis Hueber from ISS Inc.for answering questions about the ISS OxiplexTSTM and to Cornelia Hagmann for proofreading the manuscript.
文摘We present a novel optical sensor to acquire simultaneously functional near-infrared imaging(fNIRI)and functional magnetic resonance imaging(fMRI)data with an improved handling and direct localization in the MRI compared to available sensors.Quantitative phantom and interference measurements showed that both methods can be combined without reciprocal adverse effects.The direct localization of the optical sensor on MR images acquired with a T1-weighted echo sequence simplifies the co-registration of NIRI and MRI data.In addition,the optical sensor is simple to attach,which is crucial for measurements on vulnerable subjects.The fNIRI and T2^(*)-weighted fMRI data of a cerebral activation were simultaneously acquired proving the practicability of the setup.
文摘Tick-mark recognition is a key step for automatic reading of analog instrument with computer vision techniques which is called for in many automatic processes among industries. As many factors result in the tick-mark distortion in the sampled image such as the generally stained surface of instrument, or/and reflection and refraction of light, the accuracy and robustness of tick-mark reading are directly or indirectly weakened. Double image segmentation algorithm (DISA) is employed to solve this problem which make</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> coarse segmentation with structural parameters of instruments, and make</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> accurate segmentation with gray difference between tick-marks and their background. Tests have been conducted with 640 * 480 pixel industry camera and 4 kinds of pointer pressure meter, and the results show that read-out rate of tick-mark in pointer meter reached 100% at sufficient illumination and 76% at insufficient illumination for air packed instrument. In addition with oil packed instrument, DISA still experienced 64% recognition in comparison with 0 success record by Hough Transformation.
文摘Anemia is a blood abnormality that affects the quantity and quality of red blood cells in the human body. This sometimes banal sign spares no continent and no social stratum. This anomaly is generally appreciated through biological analyzes of patients</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;"> blood. These analyzes, which boil down to the knowledge of hemato-metric constants, cannot by themselves allow the characterization of certain forms of anemia in the sense that most anemia are related to the morphology and color of red blood cells. Our work in this paper is to perform blood smears on patients and perform a morphological and colorimetric analysis of red blood cells on these smears. This approach allowed us to highlight on each erythrocyte morphological and colorimetric descriptors to accurately identify the types of anemia by image processing methods. This identification is performed in an automated environment to allow pathologists to respond quickly to anemia-related emergencies and also improve the treatment to be conducted. This automation required the implementation of a new approach to electronic instrumentation and the acquisition of microscopic blood smear images for the automatic and rapid diagnosis of anemia.
基金Supported by the National Natural Science Foundation of Chinasupport by the Space Science Preliminary Study Program of the Chinese Academy of Sciences and by the China Postdoctoral Science Foundation (No. 20080440395)+2 种基金SNZ acknowledges the partial funding support by the Ministry of Education of ChinaDirectional Research Project of the Chinese Academy of Sciences under project No. KJCX2-YW-T03the National Natural Science Foundation of China (Grant Nos. 10521001, 10733010, 10725313 and 10327301)
文摘Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed.