A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level...A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well.展开更多
The thermal effects induced by a moderate intensity focused ultrasound and enhanced by combined laser pulses for bio-tissues and tissue-phantom are studied experimentally and theoretically. At first, the heating effec...The thermal effects induced by a moderate intensity focused ultrasound and enhanced by combined laser pulses for bio-tissues and tissue-phantom are studied experimentally and theoretically. At first, the heating effects of bio-tissues and tissue-phantom induced by ultrasound and enhanced by laser are measured experimentally. The heating processes induced by attenuations of focused ultrasonic waves and cavitation effects of the focused ultrasound and combined laser are analyzed theoretically. By analyzing the mechanisms of these effects, it is found that the laser nucleation makes the cavitation bubble generation more easily, which can effectively enhance the ultrasonic cavitation effects, and then enhance the thermal effects of the samples. On the other hand, to evaluate quantitatively the heating processes induced by the focused ultrasound and enhanced by the pulsed laser, by fitting the theoretical calculations to the experimental results, the corresponding cavitation bubbles and rising temperatures induced by the focused ultrasound with and without laser can be estimated approximately.展开更多
基金Supported by the National Natural Science Foundation of China (21121064,20990224)National Science and Technology Ministry of China (2008BAE64B02)
文摘A simple and efficient sonochemical method was developed for the degradation of organic matter and ammonia nitrogen in azodicarbonamide wastewater.The effects of initial pH,ultrasound format and peripheral water level on the sonolysis of hydrazine,urea,COD and ammonia nitrogen were investigated.It is found that the initial pH has a significant influence on the degradation of hydrazine and ammonia nitrogen,whereas this impact to urea is relatively small.It also shows that a noticeable enhancement of ammonia nitrogen removal could be achieved in a proper intermittent ultrasound operation mode,i.e.,1/1 min on/off mode.The height difference between the periph-eral water level and the inner water level of the flask affects the efficiency of ultrasonic treatment as well.
基金supported by the National Natural Science Foundation of China(11304160)Special Funds for Quality Supervision,Inspection and Quarantine Research in Public Interest of China(201510068)
文摘The thermal effects induced by a moderate intensity focused ultrasound and enhanced by combined laser pulses for bio-tissues and tissue-phantom are studied experimentally and theoretically. At first, the heating effects of bio-tissues and tissue-phantom induced by ultrasound and enhanced by laser are measured experimentally. The heating processes induced by attenuations of focused ultrasonic waves and cavitation effects of the focused ultrasound and combined laser are analyzed theoretically. By analyzing the mechanisms of these effects, it is found that the laser nucleation makes the cavitation bubble generation more easily, which can effectively enhance the ultrasonic cavitation effects, and then enhance the thermal effects of the samples. On the other hand, to evaluate quantitatively the heating processes induced by the focused ultrasound and enhanced by the pulsed laser, by fitting the theoretical calculations to the experimental results, the corresponding cavitation bubbles and rising temperatures induced by the focused ultrasound with and without laser can be estimated approximately.