A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis...A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.展开更多
In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam modu...In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam module synchronously to the FSW-process. The effect of the ultrasound on the resulting welds, their microstructure and their corrosion properties was investigated by light and scanning electron microscopy and corrosion investigations. The USE-FSW-joints showed less and smaller steel particles in the nugget zone as well as a thinner continuous intermetallic phase of FeAl3 at the interface. The nondestructive testing method of computed laminography proved the observations made by optic microscopy due to non-porous joints for both techniques. Corrosion investigations showed only low corrosion current densities and no enhanced galvanic corrosion for the EN AW-6061/DC04-hybrid joints in sodium chloride solution.展开更多
基金Scientific Developing Foundation of Tianjin Education Commission,Grant/Award Number:2018ZD09National Natural Science Foundation of China,Grant/Award Numbers:51777138,52202282。
文摘A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.
基金supported by the DFG Priority Program 1640:“Joining by plastic deformation”
文摘In this work, the joining of aluminum to steel was conducted by ultrasound enhanced friction stir weld- ing (USE-FSW). The power ultrasound was introduced into one of the metal sheets by an ultrasonic roll seam module synchronously to the FSW-process. The effect of the ultrasound on the resulting welds, their microstructure and their corrosion properties was investigated by light and scanning electron microscopy and corrosion investigations. The USE-FSW-joints showed less and smaller steel particles in the nugget zone as well as a thinner continuous intermetallic phase of FeAl3 at the interface. The nondestructive testing method of computed laminography proved the observations made by optic microscopy due to non-porous joints for both techniques. Corrosion investigations showed only low corrosion current densities and no enhanced galvanic corrosion for the EN AW-6061/DC04-hybrid joints in sodium chloride solution.