Waste cooking oil(WCO) is considered to be a promising alternative for vegetable oils that have been traditionally used for biodiesel production. In this study, WCO with a fairly high free fatty acid content was trans...Waste cooking oil(WCO) is considered to be a promising alternative for vegetable oils that have been traditionally used for biodiesel production. In this study, WCO with a fairly high free fatty acid content was transesterified into biodiesel in a one-step procedureat room temperature(25℃) under ultrasound irradiation and in the presence of potassium hydroxide(KOH) as catalysts. Response surface methodology(RSM) was used to investigate the effects of the methanol/oil molar ratio, reaction time,and catalyst loading on the fatty acid methyl ester(FAME) yield and the biodiesel yield. The optimal reaction conditions for the production of WCO biodiesel were found to be a methanol/oil molar ratio of 8.6:1, a reaction time of 25 min, and a catalyst loading of 2.43 wt%. Under these optimal settings,the FAME and biodiesel yields were 96.4% and 92.7%, respectively. The properties of the resultant WCO biodiesel, including kinetic viscosity, acid number, water content, and flash point, were measured according to ASTM D6751 standards. The obtained results provide useful information for the large-scale production of WCO biodiesel.展开更多
This study proposed using waste frying oil rather than refined vegetable oil as an effective way to reduce the raw material cost of producing biodiesel. In addition, the ultrasonic-assisted two-step catalyzing Process...This study proposed using waste frying oil rather than refined vegetable oil as an effective way to reduce the raw material cost of producing biodiesel. In addition, the ultrasonic-assisted two-step catalyzing Process was first adopted for the production of biodiesel from waste frying oil. The results show that the total reaction time was less than 50 min and the conversion rate of fatty acid methyl esters (FAMEs) achieved was 97.1%. Therefore, the ultrasonic-assisted two-step catalyzing process has a potential application in producing biodiesel from waste frying oil.展开更多
Internal combustion engines with application in automobiles and other relevant industries constitute significant environmental pollution via the release of toxic exhaust gasses like carbon monoxide (CO), hydrocarbons ...Internal combustion engines with application in automobiles and other relevant industries constitute significant environmental pollution via the release of toxic exhaust gasses like carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrogen oxide (NO<sub>x</sub>). Engine researchers and manufacturers are challenged to develop external and internal measures to ensure environmentally friendly solutions to accommodate and conform to the growing list of emission standards. Therefore, this work presents an experimental investigation of the NO<sub>x</sub> emission profile of a diesel engine that is fuelled and fitted with waste frying oil-based biodiesel and catalytic converter. Using a single-cylinder, four-stroke air-cooled CI engine at a constant speed of 1900 rpm and different loadings of 25%, 50%, 75%, and 100%;fitted with a catalytic converter at the exhaust outlet of the engine and linked to a dynamometer and a gas analyser, an experiment was conducted at biodiesel/diesel volume blends of B0 (0/10), B5 (5/95), B20 (20/80), B30 (30/70), B70 (70/30), B100 (100/0);and 30% concentration (v/v), 0.5 litre/hr flow rate of aqueous urea from the catalytic converter. The results show an increasing NO<sub>x</sub> emission as the biodiesel component increased in the blend. The catalytic converter showed a downward NO<sub>x</sub> reduction with a significant 68% reduction in efficiency at high exhaust gas temperatures. It is concluded that the combined utilisation of waste frying oil-based biodiesel and the catalytic converter yields substantial NO<sub>x</sub> emission reduction.展开更多
The objective of this study was to reduce the environmental impacts of used frying oil waste through the production of biodiesel. A 22 factorial planning has been used to evaluate the influences of alcohol/oil and rea...The objective of this study was to reduce the environmental impacts of used frying oil waste through the production of biodiesel. A 22 factorial planning has been used to evaluate the influences of alcohol/oil and reaction time on the biodiesel production yield. The optimal condition to produce the biodiesel has been found by use of the response surface methodology and analysis of variance to obtain the fitting model. This study was conducted in Campinas city, Brazil, where were collected the waste oil. An analysis of ecological cost also has been developed. Cooking oils collected from Campinas homes were mixed with ethanol in planned proportions (1:9, 1:7 and 1:5) and were transesterified at 60 ℃ and planned reaction times (30, 60 or 90 min), in order to obtain biodiesel, using 0.1% NaOH as a catalyst. The results of the physical-chemical analyses demonstrated that the biodiesels obtained possessed characteristics close to those required by Brazilian standards. This fuel could be used in fleets of buses, trucks and machines, or even sold to fuel distributors, which results in a solving between US$0.8 and US$4.5 millions. Thus, Campinas would gain environmental credits and become a sustainable city.展开更多
The conversion of waste frying oil into a valuable methyl ester (biodiesel) has been successfully conducted and also the acid pre-treatment process was carried out prior to the main biodiesel production process for lo...The conversion of waste frying oil into a valuable methyl ester (biodiesel) has been successfully conducted and also the acid pre-treatment process was carried out prior to the main biodiesel production process for lowering waste frying oil free fatty acid (FFA) content below 1%. The physicochemical properties of biodiesel were analyzed to ensure the product could meet the standards of fuel properties. The methanolysis was selected as the biodiesel production technique under various mixing speeds namely 350, 400 and 450 rpm, while the other parameters are maintained at the optimum process conditions such as methanol to oil molar ratio is 6:1, percentage of catalyst loading is 1.0% wt, reaction temperature is 60℃, and reaction time is 50 min. Also, the investigation on the kinematic viscosity, density and flash point of biodiesel was performed against a number of rpm. The standards of ASTM D 6751 were applied to measure the entire prescribed properties of biodiesel. The highest yield of biodiesel obtained was 99%. The values of flash point, kinematic viscosity and density were in the range of specified limitations. Other biodiesel properties fulfilled the diesel engine application requirements.展开更多
Waste frying oil (WFO) is a very important feedstock for obtaining biodiesel at low cost and using WFO in transesterification reactions to produce biodiesel helps eliminate local environmental problems. In this stud...Waste frying oil (WFO) is a very important feedstock for obtaining biodiesel at low cost and using WFO in transesterification reactions to produce biodiesel helps eliminate local environmental problems. In this study biodiesel was produced from WFO in sub- and super- critical methanol on a zeolite Y solid acid catalyst. The procedure was optimized using a design of experiments by varying the methanol to WFO molar ratio, the reaction temperature, and the amount of catalyst. Typical biodiesel yields varied from 83 to nearly 100% with methyl esters content ranging from 1.41-1.66mol.L-~ and typical dynamic viscosities of 22.1-8.2 cE Gas chromatography was used to determine the molecular composition of the biodiesel. The reaction products contained over 82 wt-% methyl esters, 4.2 wt-% free acids, 13.5 wt-% monoglycer- ides, and 0.3 wt-% diglycerides. The transesterification of WFO with methanol around its critical temperature combined with a zeolite Y as an acid catalyst is an efficient approach for the production of biodiesel with acceptable yields.展开更多
In this study,aiming at optimization of a novel continuous biodiesel production system was developed by combining technologies based on microwaves and magnetic fields.Factors affecting microwave-assisted biodiesel(alk...In this study,aiming at optimization of a novel continuous biodiesel production system was developed by combining technologies based on microwaves and magnetic fields.Factors affecting microwave-assisted biodiesel(alkyl esters)production reaction were analyzed in this investigation.Studied factors included magnetic field intensity(0,0.225 and 0.450 T),microwave power(400,821,and 1181 W),percentages of KOH and Na OH catalysts at constant concentrations of 1 wt%(0,50%and 100%),and percentages of ethanol and methanol at a constant molar ratio of 6:1(0,50%and 100%).Response Surface Methodology(RSM)was used to optimize the reaction conditions.RSM-based analysis indicated that,all independent parameters had significant effects on the reaction efficiency.Results of the investigations reveal that the largest effects on the conversion efficiency were due to type of alcohol and magnetic field intensity.The optimized conditions were found to be a magnetic field intensity of 0.331 T,a microwave power of 677.77 W,catalyst percentages of 30.35%and 69.65%for KOH and Na OH,respectively,and alcohol percentages of 80.47%and 19.53%for methanol and ethanol,respectively.Under the optimal conditions,yield of the reaction was 96.2%.展开更多
A comparative study of biodiesel production from waste cooking oil using sulfuric acid (Two-step) and microwave-assisted transesterification (One-step) was carried out. A two-step transesterification process was used ...A comparative study of biodiesel production from waste cooking oil using sulfuric acid (Two-step) and microwave-assisted transesterification (One-step) was carried out. A two-step transesterification process was used to produce biodiesel (alkyl ester) from high free fatty acid (FFA) waste cooking oil. Microwave-assisted catalytic transesterification using BaO and KOH was evaluated for the efficacy of microwave irradiation in biodiesel production from waste cooking oil. On the basis of energy consumptions for waste cooking oil (WCO) transesterification by both conventional heating and microwave-heating methods evaluated in this study, it was estimated that the microwave-heating method consumes less than 10% of the energy to achieve the same yield as the conventional heating method for given experimental conditions. The thermal stability of waste cooking oil and biodiesel was assessed by thermogravimetric analysis (TGA). The analysis of different oil properties, fuel properties and process parametric evaluative studies of waste cooking oil are presented in detail. The fuel properties of biodiesel produced were compared with American Society for Testing and Materials (ASTM) standards for biodiesel and regular diesel.展开更多
The use of metakaolinite as a Catalyst in the transesterification reaction of waste cooking oil with methanol to obtain fatty acid methyl esters (biodiesel) was studied. Kaolinite was thermally activated by dehydrox...The use of metakaolinite as a Catalyst in the transesterification reaction of waste cooking oil with methanol to obtain fatty acid methyl esters (biodiesel) was studied. Kaolinite was thermally activated by dehydroxylation to obtain the metakaolinite phase. Metakaolinite samples were characterized using X-ray diffraction, Nz adsorption-desorption, simultaneous thermogravimetric analyse/differential scanning calorimetry (TGA/DSC) experiments on the thermal decomposition of kaolinite and Fourier-transform infrared spectrometer (FTIR) analysis. Parameters related to the transesterificaion reaction, including temperature, time, the amount of catalyst and the molar ratio of waste cooking oil to methanol, were also investigated. The transesterification reaction produced biodiesel in a maximum yield of 95% under the following conditions: metakaolinite, 5 wt-% (relative to oil); molar ratio of oil to methanol, 1:23; reaction temperature, 160℃; reaction time, 4 h. After eight consecutive reaction cycles, the metakaolinite can be recovered and reused after being washed and dried. The biodiesel thus obtained exhibited a viscosity of 5.4 mm2" s-1 and a density of 900.1 kg-m-3. The results showed that metakaolinite is a prominent, inexpensive, reusable and thermally stable catalyst for the transesterification of waste cooking oil.展开更多
Biodiesel is an excellent option for reducing dependence on fossil fuels with environmental advantages by reducing hazardous emissions. The enzymatic transesterification has attracted the attention of researchers in t...Biodiesel is an excellent option for reducing dependence on fossil fuels with environmental advantages by reducing hazardous emissions. The enzymatic transesterification has attracted the attention of researchers in the last decade and the advantages of enzymatic catalysis show that the production of biodiesel by this route has good potential, mainly because it is friendly environment. For biodiesel, production process by enzyme catalysis is chosen the response surface methodology. It is an experimental strategy to find the best operating conditions oftransesterification reaction to improve the biodiesel quality. The Process has three variables: temperature, molar ratio oil-alcohol and catalyst quantity. The process was monitored by GC-FID (gas chromatography with flame ionization detector). The yield of the transesterification reaction by enzymatic catalysis decreases with increasing temperature, and may be due to inactivation of the enzyme by denaturation at temperatures above 50 ℃. The second-order design used was the "CDC (central design composition)" which produced a maximum yield of 95.5% in the transesterification reaction by enzymatic catalysis obtained at a temperature of 45 ℃, molar ratio methanol:oil of 8:1 and a catalyst loading of 8% wt.展开更多
Biodiesel production from waste cooking oils over SO42-/Zr-SBA-15 catalyst was successfully carried out and investigated. SO42-/Zr-SBA-15 catalyst was prepared by one-step process using anhydrous zirconium nitrate as ...Biodiesel production from waste cooking oils over SO42-/Zr-SBA-15 catalyst was successfully carried out and investigated. SO42-/Zr-SBA-15 catalyst was prepared by one-step process using anhydrous zirconium nitrate as zirconium resource, and endowed with the strong Lewis acid sites formed by supporting the zirconium species onto the SBA-15 surface. The asprepared SOt2-/Zr-SBA-15 showed excellent triglyceride conversion efficiency of 92.3% and fatty acid methyl esters (FAME) yield of 91.7% for the transesterification of waste cooking oil with methanol under the optimized reaction conditions: the methanol/oil molar ratio of 30, the reaction temperature of 160 ℃, the reaction time of 12 h and 10wt% of catalyst. It was noticed that the as-prepared SOa2-/Zr-SBA-15 materials with the higher area surface of mesoporous framework and the surface acidity displayed excellent stability and reusability, maintaining high FAME yield of (74±1)% after seven runs of reaction.展开更多
This study evaluates the potential of local fish waste oil as a feedstock for biodiesel via supercritical methanol transesterification(SCMT).Hexane was used as a cosolvent and the transesterification reaction was carr...This study evaluates the potential of local fish waste oil as a feedstock for biodiesel via supercritical methanol transesterification(SCMT).Hexane was used as a cosolvent and the transesterification reaction was carried out in a continuous reactor under supercritical conditions.The response surface methodology(RSM)method was applied to analyse the effect of four independent variables,including the weight ratio of methanol to fish-waste oil(W),the reaction temperature(T),the pressure(P)and the feed flow rate(F),on the yield of the biodiesel production in supercritical methanol.According to the calculated optimal operating condition for the RSM,the values of W(22.3 weight ratio of methanol to fish waste oil),T(270°C),P(112.7 bar)and F(2.0 mL min-1)were achieved.Under the optimum conditions,the highest yield was estimated to be 94.6%(g/g).The obtained yield was found to be close to the theoretical yield(95.2%).This value suggests that the proposed strategy has a promising potential in the production of biodiesel fuel.展开更多
基金the financial support from NSERC Discovery(RGPIN 04211)NSERC CRDPJ 492179.
文摘Waste cooking oil(WCO) is considered to be a promising alternative for vegetable oils that have been traditionally used for biodiesel production. In this study, WCO with a fairly high free fatty acid content was transesterified into biodiesel in a one-step procedureat room temperature(25℃) under ultrasound irradiation and in the presence of potassium hydroxide(KOH) as catalysts. Response surface methodology(RSM) was used to investigate the effects of the methanol/oil molar ratio, reaction time,and catalyst loading on the fatty acid methyl ester(FAME) yield and the biodiesel yield. The optimal reaction conditions for the production of WCO biodiesel were found to be a methanol/oil molar ratio of 8.6:1, a reaction time of 25 min, and a catalyst loading of 2.43 wt%. Under these optimal settings,the FAME and biodiesel yields were 96.4% and 92.7%, respectively. The properties of the resultant WCO biodiesel, including kinetic viscosity, acid number, water content, and flash point, were measured according to ASTM D6751 standards. The obtained results provide useful information for the large-scale production of WCO biodiesel.
文摘This study proposed using waste frying oil rather than refined vegetable oil as an effective way to reduce the raw material cost of producing biodiesel. In addition, the ultrasonic-assisted two-step catalyzing Process was first adopted for the production of biodiesel from waste frying oil. The results show that the total reaction time was less than 50 min and the conversion rate of fatty acid methyl esters (FAMEs) achieved was 97.1%. Therefore, the ultrasonic-assisted two-step catalyzing process has a potential application in producing biodiesel from waste frying oil.
文摘Internal combustion engines with application in automobiles and other relevant industries constitute significant environmental pollution via the release of toxic exhaust gasses like carbon monoxide (CO), hydrocarbons (HC), particulate matter (PM), and nitrogen oxide (NO<sub>x</sub>). Engine researchers and manufacturers are challenged to develop external and internal measures to ensure environmentally friendly solutions to accommodate and conform to the growing list of emission standards. Therefore, this work presents an experimental investigation of the NO<sub>x</sub> emission profile of a diesel engine that is fuelled and fitted with waste frying oil-based biodiesel and catalytic converter. Using a single-cylinder, four-stroke air-cooled CI engine at a constant speed of 1900 rpm and different loadings of 25%, 50%, 75%, and 100%;fitted with a catalytic converter at the exhaust outlet of the engine and linked to a dynamometer and a gas analyser, an experiment was conducted at biodiesel/diesel volume blends of B0 (0/10), B5 (5/95), B20 (20/80), B30 (30/70), B70 (70/30), B100 (100/0);and 30% concentration (v/v), 0.5 litre/hr flow rate of aqueous urea from the catalytic converter. The results show an increasing NO<sub>x</sub> emission as the biodiesel component increased in the blend. The catalytic converter showed a downward NO<sub>x</sub> reduction with a significant 68% reduction in efficiency at high exhaust gas temperatures. It is concluded that the combined utilisation of waste frying oil-based biodiesel and the catalytic converter yields substantial NO<sub>x</sub> emission reduction.
文摘The objective of this study was to reduce the environmental impacts of used frying oil waste through the production of biodiesel. A 22 factorial planning has been used to evaluate the influences of alcohol/oil and reaction time on the biodiesel production yield. The optimal condition to produce the biodiesel has been found by use of the response surface methodology and analysis of variance to obtain the fitting model. This study was conducted in Campinas city, Brazil, where were collected the waste oil. An analysis of ecological cost also has been developed. Cooking oils collected from Campinas homes were mixed with ethanol in planned proportions (1:9, 1:7 and 1:5) and were transesterified at 60 ℃ and planned reaction times (30, 60 or 90 min), in order to obtain biodiesel, using 0.1% NaOH as a catalyst. The results of the physical-chemical analyses demonstrated that the biodiesels obtained possessed characteristics close to those required by Brazilian standards. This fuel could be used in fleets of buses, trucks and machines, or even sold to fuel distributors, which results in a solving between US$0.8 and US$4.5 millions. Thus, Campinas would gain environmental credits and become a sustainable city.
文摘The conversion of waste frying oil into a valuable methyl ester (biodiesel) has been successfully conducted and also the acid pre-treatment process was carried out prior to the main biodiesel production process for lowering waste frying oil free fatty acid (FFA) content below 1%. The physicochemical properties of biodiesel were analyzed to ensure the product could meet the standards of fuel properties. The methanolysis was selected as the biodiesel production technique under various mixing speeds namely 350, 400 and 450 rpm, while the other parameters are maintained at the optimum process conditions such as methanol to oil molar ratio is 6:1, percentage of catalyst loading is 1.0% wt, reaction temperature is 60℃, and reaction time is 50 min. Also, the investigation on the kinematic viscosity, density and flash point of biodiesel was performed against a number of rpm. The standards of ASTM D 6751 were applied to measure the entire prescribed properties of biodiesel. The highest yield of biodiesel obtained was 99%. The values of flash point, kinematic viscosity and density were in the range of specified limitations. Other biodiesel properties fulfilled the diesel engine application requirements.
文摘Waste frying oil (WFO) is a very important feedstock for obtaining biodiesel at low cost and using WFO in transesterification reactions to produce biodiesel helps eliminate local environmental problems. In this study biodiesel was produced from WFO in sub- and super- critical methanol on a zeolite Y solid acid catalyst. The procedure was optimized using a design of experiments by varying the methanol to WFO molar ratio, the reaction temperature, and the amount of catalyst. Typical biodiesel yields varied from 83 to nearly 100% with methyl esters content ranging from 1.41-1.66mol.L-~ and typical dynamic viscosities of 22.1-8.2 cE Gas chromatography was used to determine the molecular composition of the biodiesel. The reaction products contained over 82 wt-% methyl esters, 4.2 wt-% free acids, 13.5 wt-% monoglycer- ides, and 0.3 wt-% diglycerides. The transesterification of WFO with methanol around its critical temperature combined with a zeolite Y as an acid catalyst is an efficient approach for the production of biodiesel with acceptable yields.
基金the university research deputy for its financial resources.
文摘In this study,aiming at optimization of a novel continuous biodiesel production system was developed by combining technologies based on microwaves and magnetic fields.Factors affecting microwave-assisted biodiesel(alkyl esters)production reaction were analyzed in this investigation.Studied factors included magnetic field intensity(0,0.225 and 0.450 T),microwave power(400,821,and 1181 W),percentages of KOH and Na OH catalysts at constant concentrations of 1 wt%(0,50%and 100%),and percentages of ethanol and methanol at a constant molar ratio of 6:1(0,50%and 100%).Response Surface Methodology(RSM)was used to optimize the reaction conditions.RSM-based analysis indicated that,all independent parameters had significant effects on the reaction efficiency.Results of the investigations reveal that the largest effects on the conversion efficiency were due to type of alcohol and magnetic field intensity.The optimized conditions were found to be a magnetic field intensity of 0.331 T,a microwave power of 677.77 W,catalyst percentages of 30.35%and 69.65%for KOH and Na OH,respectively,and alcohol percentages of 80.47%and 19.53%for methanol and ethanol,respectively.Under the optimal conditions,yield of the reaction was 96.2%.
文摘A comparative study of biodiesel production from waste cooking oil using sulfuric acid (Two-step) and microwave-assisted transesterification (One-step) was carried out. A two-step transesterification process was used to produce biodiesel (alkyl ester) from high free fatty acid (FFA) waste cooking oil. Microwave-assisted catalytic transesterification using BaO and KOH was evaluated for the efficacy of microwave irradiation in biodiesel production from waste cooking oil. On the basis of energy consumptions for waste cooking oil (WCO) transesterification by both conventional heating and microwave-heating methods evaluated in this study, it was estimated that the microwave-heating method consumes less than 10% of the energy to achieve the same yield as the conventional heating method for given experimental conditions. The thermal stability of waste cooking oil and biodiesel was assessed by thermogravimetric analysis (TGA). The analysis of different oil properties, fuel properties and process parametric evaluative studies of waste cooking oil are presented in detail. The fuel properties of biodiesel produced were compared with American Society for Testing and Materials (ASTM) standards for biodiesel and regular diesel.
文摘The use of metakaolinite as a Catalyst in the transesterification reaction of waste cooking oil with methanol to obtain fatty acid methyl esters (biodiesel) was studied. Kaolinite was thermally activated by dehydroxylation to obtain the metakaolinite phase. Metakaolinite samples were characterized using X-ray diffraction, Nz adsorption-desorption, simultaneous thermogravimetric analyse/differential scanning calorimetry (TGA/DSC) experiments on the thermal decomposition of kaolinite and Fourier-transform infrared spectrometer (FTIR) analysis. Parameters related to the transesterificaion reaction, including temperature, time, the amount of catalyst and the molar ratio of waste cooking oil to methanol, were also investigated. The transesterification reaction produced biodiesel in a maximum yield of 95% under the following conditions: metakaolinite, 5 wt-% (relative to oil); molar ratio of oil to methanol, 1:23; reaction temperature, 160℃; reaction time, 4 h. After eight consecutive reaction cycles, the metakaolinite can be recovered and reused after being washed and dried. The biodiesel thus obtained exhibited a viscosity of 5.4 mm2" s-1 and a density of 900.1 kg-m-3. The results showed that metakaolinite is a prominent, inexpensive, reusable and thermally stable catalyst for the transesterification of waste cooking oil.
文摘Biodiesel is an excellent option for reducing dependence on fossil fuels with environmental advantages by reducing hazardous emissions. The enzymatic transesterification has attracted the attention of researchers in the last decade and the advantages of enzymatic catalysis show that the production of biodiesel by this route has good potential, mainly because it is friendly environment. For biodiesel, production process by enzyme catalysis is chosen the response surface methodology. It is an experimental strategy to find the best operating conditions oftransesterification reaction to improve the biodiesel quality. The Process has three variables: temperature, molar ratio oil-alcohol and catalyst quantity. The process was monitored by GC-FID (gas chromatography with flame ionization detector). The yield of the transesterification reaction by enzymatic catalysis decreases with increasing temperature, and may be due to inactivation of the enzyme by denaturation at temperatures above 50 ℃. The second-order design used was the "CDC (central design composition)" which produced a maximum yield of 95.5% in the transesterification reaction by enzymatic catalysis obtained at a temperature of 45 ℃, molar ratio methanol:oil of 8:1 and a catalyst loading of 8% wt.
文摘Biodiesel production from waste cooking oils over SO42-/Zr-SBA-15 catalyst was successfully carried out and investigated. SO42-/Zr-SBA-15 catalyst was prepared by one-step process using anhydrous zirconium nitrate as zirconium resource, and endowed with the strong Lewis acid sites formed by supporting the zirconium species onto the SBA-15 surface. The asprepared SOt2-/Zr-SBA-15 showed excellent triglyceride conversion efficiency of 92.3% and fatty acid methyl esters (FAME) yield of 91.7% for the transesterification of waste cooking oil with methanol under the optimized reaction conditions: the methanol/oil molar ratio of 30, the reaction temperature of 160 ℃, the reaction time of 12 h and 10wt% of catalyst. It was noticed that the as-prepared SOa2-/Zr-SBA-15 materials with the higher area surface of mesoporous framework and the surface acidity displayed excellent stability and reusability, maintaining high FAME yield of (74±1)% after seven runs of reaction.
文摘This study evaluates the potential of local fish waste oil as a feedstock for biodiesel via supercritical methanol transesterification(SCMT).Hexane was used as a cosolvent and the transesterification reaction was carried out in a continuous reactor under supercritical conditions.The response surface methodology(RSM)method was applied to analyse the effect of four independent variables,including the weight ratio of methanol to fish-waste oil(W),the reaction temperature(T),the pressure(P)and the feed flow rate(F),on the yield of the biodiesel production in supercritical methanol.According to the calculated optimal operating condition for the RSM,the values of W(22.3 weight ratio of methanol to fish waste oil),T(270°C),P(112.7 bar)and F(2.0 mL min-1)were achieved.Under the optimum conditions,the highest yield was estimated to be 94.6%(g/g).The obtained yield was found to be close to the theoretical yield(95.2%).This value suggests that the proposed strategy has a promising potential in the production of biodiesel fuel.