Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate...Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon).展开更多
Central composite design (CCD), the most popular design ofresponse surface methodology (RSM), was employed to investigate theeffect of total organic carbon (TOC) ratio of high molecular weightorganic matter (HMW) to l...Central composite design (CCD), the most popular design ofresponse surface methodology (RSM), was employed to investigate theeffect of total organic carbon (TOC) ratio of high molecular weightorganic matter (HMW) to low molecular weight organic matter (LMW),the LMW strength and molar ratio of hydrogen peroxide to ferrous ionon landfill leachate treatment by Fenton process. Based on theexperimental data, a response surface quadratic model in terms ofactual factors was obtained through analysis of variance (ANOVA).展开更多
High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. I...High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradafion permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe^2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.展开更多
Abstract [ Objective] The degradation conditions and course of reactive brilliant red X-3B by Fenton oxidation was investigated to understand the feasibility of using Fenton oxidation for dye removal. [Metbed] By usin...Abstract [ Objective] The degradation conditions and course of reactive brilliant red X-3B by Fenton oxidation was investigated to understand the feasibility of using Fenton oxidation for dye removal. [Metbed] By using Fenton oxidation, the degradation conditions of reactive brilliant red X-3B wastewater was studied in different initial concentrations, then analyzed its degradation products and process through gas chromatography-mass spectrometer (GC-MS). [ Remit] When H202:Fe2+ (molar ratio) =3.1, the removal rate of CODc, was the highest. With the increase of Fe2+ dos- age, the wastewater became red and more deposits generated. As CODc, of wastewater was 200,400 and 800 mg/L, the dosage of H202 was 0.5, 1.0 and 3.5 ml respectively, and the best initial pH of the wastewater was 4 -5, the removal rate of GODc, reached the maximum values. In addition, Fenton reaction was very fast, that is, most degradation occurred in the first 5 min. [ Cenclmion] Fenton oxidation technology is practical and efficient in the declradation of dves which are mineralized difficultly.展开更多
Mesoporous MCM-41 was used as a support for the uniform dispersion of ruthenium nanoparticles having an average particle size of 5 nm.The obtained nanocomposite,MCM-41-Ru,was characterized using inductively coupled pl...Mesoporous MCM-41 was used as a support for the uniform dispersion of ruthenium nanoparticles having an average particle size of 5 nm.The obtained nanocomposite,MCM-41-Ru,was characterized using inductively coupled plasma,transmission electron microscopy,energy dispersive X-ray analysis,X-ray diffraction,and BET surface area measurements.The material was employed as an efficient and recyclable catalyst in the ultrasound-assisted oxidation of arenes.It was observed that ultrasound irradiation in combination with KBrO3 as the oxidant,in the presence of MCM-41-Ru nanoparticles,accelerates the oxidation reaction to afford the desired products in good yields.The recovered catalyst retained activity for successive runs,with a continuous change in the nature of its active sites.展开更多
Density functional theory(DFT) quantum chemical method was used to study the process of meta-xylene Fenton oxidation. The EHOMO energies of meta-xylene molecules are higher, so they have better ability to provide el...Density functional theory(DFT) quantum chemical method was used to study the process of meta-xylene Fenton oxidation. The EHOMO energies of meta-xylene molecules are higher, so they have better ability to provide electron and prone to the nucleophilic reaction. M-xylene mainly reacts with OH free radical in addition reactions. And the position of C(6) is most likely to react with the OH free radical, rather than the C(3), which is the most difficult to occur. According to all the above results, the most likely reaction mechanism of advanced oxidation degradation of meta-xylene is determined.展开更多
Wastewater after chemical flooding is difficult to be treated by biological methods due to the residual chemicals in the wastewater. Fenton oxidation, which has been widely applied to detoxifying hazardous organic com...Wastewater after chemical flooding is difficult to be treated by biological methods due to the residual chemicals in the wastewater. Fenton oxidation, which has been widely applied to detoxifying hazardous organic compounds and improving the biodegradability of these compounds, can solve this problem. So, in this paper, Fenton oxidation was used to enhance the biodegradability of the wastewater after chemical flooding. The op- timum operating conditions for the Fenton oxidation process were 2.5 g/L Fe2 + , 600 mg/L H202 and 30 rain of treatment time. The wastewater pre- treated by Fenton oxidation was treated by aerobic activated sludge. It was found that a small amount of H202 can significantly increase both the biodegradation rate and extent of the wastewater. The effluent CODc, and HPAM contents were 260 and 94 mg/L respectively after the aerobic bio- logical process with the biodegradation time of 24 h. After Fenton oxidation combining with biodegradation, the total CODc, removal efficiency was up to 90%, and polymer and oil degrading efficiencies were 95% and 92% respectively.展开更多
A series of batch-scale experiments were completed to investigate the effects of operational parameters on chemical oxygen demand (COD) removal by Fenton reagent for antibiotic pharmaceutical wastewater (APW). The sig...A series of batch-scale experiments were completed to investigate the effects of operational parameters on chemical oxygen demand (COD) removal by Fenton reagent for antibiotic pharmaceutical wastewater (APW). The significance of five operational factors including the mass ratio of H2O2/COD (g/g), the mole ratio of H2O2/Fe2+ (mol/mol), initial pH, oxidation temperature T, and reaction time t were evaluated statistically by Box-Behnken design (BBD). It was found that the five parameters were all significant to the COD removal efficiency by t-test, as well as the interactions between mass ratio/reaction time and oxidation temperature/reaction. The optimal COD removal efficiency (89.50%) was achieved when the mass ratio of H2O2/COD and the mole ratio of H2O2/Fe2+ were 3.00 and 5.00 respectively, with pH value of 3.68 at 298K for 72min reaction. A quadratic regression model with 0.9907 regression coefficient (R2) was developed which had good agreement to the experimental data.展开更多
The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfac...The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant(sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants(tween-20 and tween-60) and cationic surfactant(hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants,especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous p H value. Lead is leached with a low efficiency as the formation of low soluble Pb SO4 precipitates.展开更多
Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectr...Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton’s oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton’s oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.展开更多
Magnesium alloy was treated by micro-arc oxidation with ultrasound and the discharge phenomenon was studied. The effect of ultrasound on the discharge life and the number of discharge charges was studied asing high sp...Magnesium alloy was treated by micro-arc oxidation with ultrasound and the discharge phenomenon was studied. The effect of ultrasound on the discharge life and the number of discharge charges was studied asing high speed photography technique. The results indicate that 60 W power ultrasound increases discharge life of single charge and the total number of discharge charges in one discharge period. The size of micro-pore increases and the number of cracks in coating significantly reduce. The dendritic area with a width of 15 μm in magnesium alloy forms during micro-arc oxidation process. Ultrasound eliminates the dendritic structures of micro-arc oxidation magnesium alloy.展开更多
To solve the problem of polymer-bearing effluent of crude oil not reaching the standard,deep treatment system of Fenton oxidation-activated carbon adsorption is established in one refinery,and the most suitable condit...To solve the problem of polymer-bearing effluent of crude oil not reaching the standard,deep treatment system of Fenton oxidation-activated carbon adsorption is established in one refinery,and the most suitable condition of Fenton oxidation reaction is determined.Operation results show that CODCrconcentration of effluent treated by the system could be lower than 50 mg/L,and ammonia nitrogen content is less than 3 mg/L,which meets design requirement.展开更多
In this paper it is presented the results of advanced oxidation of leachates from a technified sanitary landfill located in the State of Querétaro, Mexico. One characteristic of already stabilized leachates from ...In this paper it is presented the results of advanced oxidation of leachates from a technified sanitary landfill located in the State of Querétaro, Mexico. One characteristic of already stabilized leachates from sanitary landfills like this case, is their difficult degradation, mainly because the organic matter contained is recalcitrant. For the samples collect, four sites were selected, where three points per site were sampled, measuring at each site the parameters: temperature, pH, conductivity, redox potential (ORP) and dissolved oxygen (DO) and leachate samples were collected. On the other hand, the Chemical Oxygen Demand (COD) of crude leachates, leachates acidified and leachates oxidized by Fenton reagent and Ozone-UV combined were analyzed. COD was used to monitor the degradation kinetics. With the results, the ArcGIS software was applied to study the distribution of temperature, dissolved oxygen and COD mainly in the leachate lagoon. For the application of Fenton reagent in the crude leachate oxidation, the pH was first adjusted and Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> ratio was optimized. The efficiency of Ozone-UV treatments was studied through COD degradation kinetics. The graphs of in (Ci/Co) vs time, showed that the kinetic processes are of order one, with very acceptable regression coefficients (R<sup>2</sup>) and extraordinarily similar speed constants (K). With Fenton oxidation, the highest percentage of COD degradation was achieved and with Ozone-UV oxidation, it was possible to practically degrade all the COD.展开更多
Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose ...Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes.展开更多
4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimen...4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.展开更多
The mineralization of phenol in aerated electrochemical oxidation has been investigated.The results show that a cathodic Fenton process can occur when the Ti-0.3Mo-0.8Ni alloy material is used as cathode in solution c...The mineralization of phenol in aerated electrochemical oxidation has been investigated.The results show that a cathodic Fenton process can occur when the Ti-0.3Mo-0.8Ni alloy material is used as cathode in solution containing ferric or ferrous ions; moreover,the reinforcement of cathodic Fenton process on the total organic carbon (TOC) removal rate of phenol is quite distinct.Among the metallic ions investigated,the ferric ion is the best catalyst for the electrochemical mineralization of phenol at initial...展开更多
We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic...We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.展开更多
The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained...The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained more attention due to its mass discharge, high toxicity and low biodegradation. For enhancing adsorption of dye and oxidative regeneration of dye-exhausted activated carbon, the novel amendment of iron-deposited granular activated carbon (GAC) was developed. It was to amend ferrous ion onto the acid-pretreated GAC when pH of iron solution was higher than the pH at point of zero charge (pH, pzc) of the GAC. Methylene blue (MB) in water was adsorbed onto the acid-treated iron- amended GAC (Fe-GAC) followed by single or multiple applications of H2O2. Batch experiments were carried out to study the adsorption isotherm and kinetics indicating adsorption of MB onto the Fe-GAC followed Langmuir isotherm and the pseudo-second order kinetics. The Fe-GACshowed the maximum adsorption capacity (qm) of 238.1 ± 0.78 mg/g which was higher than the virgin GAC with qm of 175.4 ± 13.6 mg/g at 20?C, pH 6 and the initial concentration of 20 - 200 mg/L. The heterogeneous Fenton oxidation of MB in the Fe-GAC revealedthat increasing the H2O2 loading from 7 to 140 mmol H2O2/mmol MB led to enhancing the oxidation efficiency of MB in the GAC from 62.6% to 100% due to the increased generation of hydroxyl radicals. Further enhancement of oxidation of MB in the Fe-GAC was made by the multiple application of H2O2 while minimizing OH radical scavenging often occurring at high concentration of H2O2. Therefore, the acid-treated iron-amended GAC would provide excellent adsorption capacity for MB and high oxidation efficiency of MB in the GAC with multiple applications of H2O2 and optimum iron loading.展开更多
An ultrasound-assisted heterogeneous catalytic oxidation process was applied to eliminate sulfur from commercial diesel fuel oil.The studied variables were catalyst concentration,type of catalyst(homogeneous or hetero...An ultrasound-assisted heterogeneous catalytic oxidation process was applied to eliminate sulfur from commercial diesel fuel oil.The studied variables were catalyst concentration,type of catalyst(homogeneous or heterogeneous),oxidizing agent concentration,and the application of ultrasound energy.Supported catalysts were prepared by impregnation of coal fly ash with an iron(Ⅱ)sulfate aqueous solution using ultrasound energy.After drying,the catalyst was calcined at 500℃for 4 h.The oxidizing agent was hydrogen peroxide.Ultrasound energy was applied with a frequency of 47 kHz and an intensity of 147 W.Ethanol was employed for extracting the oxidized compounds from the hydrocarbon mixture.Coal fly ash and ethanol were used with the purpose of applying low-cost raw materials in chemical processes.It was found that under the studied conditions,increasing oxidizing agent concentration and the application of ultrasound energy can enhance the sulfur removal from commercial diesel fuel oil.Catalyst concentration did not play a significant role in the process.Similar results were obtained using homogeneous or heterogeneous catalyst,which is important since the heterogeneous catalyst could be recovered,reactivated,and used in many cycles.展开更多
文摘Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon).
基金Supported by the Delaware Solid Waste Authority, Dover DE, USA and China Scholarship Council (No. 97842039).
文摘Central composite design (CCD), the most popular design ofresponse surface methodology (RSM), was employed to investigate theeffect of total organic carbon (TOC) ratio of high molecular weightorganic matter (HMW) to low molecular weight organic matter (LMW),the LMW strength and molar ratio of hydrogen peroxide to ferrous ionon landfill leachate treatment by Fenton process. Based on theexperimental data, a response surface quadratic model in terms ofactual factors was obtained through analysis of variance (ANOVA).
基金Project supported by the National Natural Science Foundation of China (No.50525824)Natural Science Fund of Xinjiang Province of China (No.200432109).
文摘High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran (One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradafion permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe^2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.
基金Supported by Key Laboratory Project of Water Pollution Control of Guangdong Province,China (2010009)
文摘Abstract [ Objective] The degradation conditions and course of reactive brilliant red X-3B by Fenton oxidation was investigated to understand the feasibility of using Fenton oxidation for dye removal. [Metbed] By using Fenton oxidation, the degradation conditions of reactive brilliant red X-3B wastewater was studied in different initial concentrations, then analyzed its degradation products and process through gas chromatography-mass spectrometer (GC-MS). [ Remit] When H202:Fe2+ (molar ratio) =3.1, the removal rate of CODc, was the highest. With the increase of Fe2+ dos- age, the wastewater became red and more deposits generated. As CODc, of wastewater was 200,400 and 800 mg/L, the dosage of H202 was 0.5, 1.0 and 3.5 ml respectively, and the best initial pH of the wastewater was 4 -5, the removal rate of GODc, reached the maximum values. In addition, Fenton reaction was very fast, that is, most degradation occurred in the first 5 min. [ Cenclmion] Fenton oxidation technology is practical and efficient in the declradation of dves which are mineralized difficultly.
基金supported by the Research Council of University of Guilan
文摘Mesoporous MCM-41 was used as a support for the uniform dispersion of ruthenium nanoparticles having an average particle size of 5 nm.The obtained nanocomposite,MCM-41-Ru,was characterized using inductively coupled plasma,transmission electron microscopy,energy dispersive X-ray analysis,X-ray diffraction,and BET surface area measurements.The material was employed as an efficient and recyclable catalyst in the ultrasound-assisted oxidation of arenes.It was observed that ultrasound irradiation in combination with KBrO3 as the oxidant,in the presence of MCM-41-Ru nanoparticles,accelerates the oxidation reaction to afford the desired products in good yields.The recovered catalyst retained activity for successive runs,with a continuous change in the nature of its active sites.
基金Supported by the research and practice project of scientific and technological innovation of school enterprise cooperation in Guangdong University of Petrochemical Technology(660648)
文摘Density functional theory(DFT) quantum chemical method was used to study the process of meta-xylene Fenton oxidation. The EHOMO energies of meta-xylene molecules are higher, so they have better ability to provide electron and prone to the nucleophilic reaction. M-xylene mainly reacts with OH free radical in addition reactions. And the position of C(6) is most likely to react with the OH free radical, rather than the C(3), which is the most difficult to occur. According to all the above results, the most likely reaction mechanism of advanced oxidation degradation of meta-xylene is determined.
基金supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ13D060001 and No.LY14D060003Science and Technology Plan Project of Zhoushan City under Grant No.2014C41004
文摘Wastewater after chemical flooding is difficult to be treated by biological methods due to the residual chemicals in the wastewater. Fenton oxidation, which has been widely applied to detoxifying hazardous organic compounds and improving the biodegradability of these compounds, can solve this problem. So, in this paper, Fenton oxidation was used to enhance the biodegradability of the wastewater after chemical flooding. The op- timum operating conditions for the Fenton oxidation process were 2.5 g/L Fe2 + , 600 mg/L H202 and 30 rain of treatment time. The wastewater pre- treated by Fenton oxidation was treated by aerobic activated sludge. It was found that a small amount of H202 can significantly increase both the biodegradation rate and extent of the wastewater. The effluent CODc, and HPAM contents were 260 and 94 mg/L respectively after the aerobic bio- logical process with the biodegradation time of 24 h. After Fenton oxidation combining with biodegradation, the total CODc, removal efficiency was up to 90%, and polymer and oil degrading efficiencies were 95% and 92% respectively.
基金Major Science and Technology Programs for Water Pollution Control and Treatment,China(No.2009ZX07317-006-02,No.2009ZX07317-008-01)State Key Laboratory of Urban Water Resource and Environment,China(No.2010DX02)
文摘A series of batch-scale experiments were completed to investigate the effects of operational parameters on chemical oxygen demand (COD) removal by Fenton reagent for antibiotic pharmaceutical wastewater (APW). The significance of five operational factors including the mass ratio of H2O2/COD (g/g), the mole ratio of H2O2/Fe2+ (mol/mol), initial pH, oxidation temperature T, and reaction time t were evaluated statistically by Box-Behnken design (BBD). It was found that the five parameters were all significant to the COD removal efficiency by t-test, as well as the interactions between mass ratio/reaction time and oxidation temperature/reaction. The optimal COD removal efficiency (89.50%) was achieved when the mass ratio of H2O2/COD and the mole ratio of H2O2/Fe2+ were 3.00 and 5.00 respectively, with pH value of 3.68 at 298K for 72min reaction. A quadratic regression model with 0.9907 regression coefficient (R2) was developed which had good agreement to the experimental data.
基金Project(21276069)supported by the National Natural Science Foundation of ChinaProject(CX2012B139)supported by the Hunan Province Innovation Foundation for Postgraduate,China
文摘The aim of this work was to investigate the effect of different surfactants on the removal efficiency of heavy metals in sewage sludge treated by a method combining bio-acidification with Fenton oxidation. Four surfactants were adopted such as anionic surfactant(sodium dodecyl benzene sulfonate, SDBS), nonionic surfactants(tween-20 and tween-60) and cationic surfactant(hexadecyl trimethyl ammonium chloride, HTAC), respectively. The indigenous sulfur-oxidizing bacteria in bio-acidification phase were enriched and cultured from fresh activated sludge obtained from a wastewater treatment plant. It is shown that different surfactants exhibited distinct effect on the removal efficiency of heavy metals from sewage sludge. The nonionic surfactants,especially tween-60, promotes the solubilization of heavy metals, while the anionic and cationic surfactants hinder the removal of heavy metals. Copper is efficiently leached. The removal efficiency of cadium is relatively lower than that of Cu due to the demand for rigorous p H value. Lead is leached with a low efficiency as the formation of low soluble Pb SO4 precipitates.
基金Project supported by Program for New Century Excellent Talents(NCET) in University of Ministry of Education of ChinaProject(50501007) supported by the National Natural Science Foundation of China+1 种基金Project(BK2007515) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(7001999) supported by SRG Grant from the Research Committee of the CityU of HK
文摘Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton’s oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton’s oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.
基金This work was supported by the National Natural Science Foundation of China ( Grant No. 31070859, No. 31370979) , the Fundamental Research of Natural Scienee for Jiamusi Universities (Young Fund, Grant No. Lq2014-001 ) and Innovation Team Construclion Projects of Colleges and Universities in Heilongjiang Province (Biomaterials and its Surface Modification, Grant No. 2012TD010).
文摘Magnesium alloy was treated by micro-arc oxidation with ultrasound and the discharge phenomenon was studied. The effect of ultrasound on the discharge life and the number of discharge charges was studied asing high speed photography technique. The results indicate that 60 W power ultrasound increases discharge life of single charge and the total number of discharge charges in one discharge period. The size of micro-pore increases and the number of cracks in coating significantly reduce. The dendritic area with a width of 15 μm in magnesium alloy forms during micro-arc oxidation process. Ultrasound eliminates the dendritic structures of micro-arc oxidation magnesium alloy.
文摘To solve the problem of polymer-bearing effluent of crude oil not reaching the standard,deep treatment system of Fenton oxidation-activated carbon adsorption is established in one refinery,and the most suitable condition of Fenton oxidation reaction is determined.Operation results show that CODCrconcentration of effluent treated by the system could be lower than 50 mg/L,and ammonia nitrogen content is less than 3 mg/L,which meets design requirement.
文摘In this paper it is presented the results of advanced oxidation of leachates from a technified sanitary landfill located in the State of Querétaro, Mexico. One characteristic of already stabilized leachates from sanitary landfills like this case, is their difficult degradation, mainly because the organic matter contained is recalcitrant. For the samples collect, four sites were selected, where three points per site were sampled, measuring at each site the parameters: temperature, pH, conductivity, redox potential (ORP) and dissolved oxygen (DO) and leachate samples were collected. On the other hand, the Chemical Oxygen Demand (COD) of crude leachates, leachates acidified and leachates oxidized by Fenton reagent and Ozone-UV combined were analyzed. COD was used to monitor the degradation kinetics. With the results, the ArcGIS software was applied to study the distribution of temperature, dissolved oxygen and COD mainly in the leachate lagoon. For the application of Fenton reagent in the crude leachate oxidation, the pH was first adjusted and Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> ratio was optimized. The efficiency of Ozone-UV treatments was studied through COD degradation kinetics. The graphs of in (Ci/Co) vs time, showed that the kinetic processes are of order one, with very acceptable regression coefficients (R<sup>2</sup>) and extraordinarily similar speed constants (K). With Fenton oxidation, the highest percentage of COD degradation was achieved and with Ozone-UV oxidation, it was possible to practically degrade all the COD.
文摘Broadly speaking, this study aims to develop "batik" dyes wastewater treatment technologies by hybrid process that combines Fenton oxidation and separation using ultrafiltration membranes. Specifically, the purpose of this study was to determine the effect of membrane characteristics, feed solution pH, operating pressure of "Dead-end" membrane reactor, and the frequency of membranes which uses on the percentage of COD reduction in "batik" wastewater. In this study, the filtrate from wastewater pre-treatment with Fenton oxidation, both without and with addition of activated carbon, is passed to the ultrafiltration (UF) separation system. Fenton oxidation process was carried out at optimum conditions, i.e. at pH 3, temperature 50 ℃, and the addition FeSO4·7H2O and H2O2 at 747-830 mg/L and 1,168-1,460 mg/L, respectively. The optimum reduction percentage of COD can be achieved when the membranes used for separation has a pore size of 0.01 to 0.015 lam, feed solution pH 2, operating pressure 1 atm and frequency of membranes uses I x. To determine the fouling potential on ultrafiltration membranes that are used, flux measurements were performed 3 times for each membrane. These stages can see that the flux decline reached 22.5% when the effluent filtered directly to the membrane; 17.3% when performed pre-treatment prior to separation processes using membranes and 10% when combined pre-treatment process, use of activated carbon and the separation using ultrafiltration membranes.
基金Partly supported by the National Natural Science Foundation of China (No. 20176053)Academic Foundation of Zhejiang University of Technology (No. 20040004).
文摘4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.
基金the Hi-Tech Research and Development Program (863) of China (No.2005AA601010-02-2)the Science Pilot Plan of the Science and Technology Bureau of Wuhan City (No.20066009138-02).
文摘The mineralization of phenol in aerated electrochemical oxidation has been investigated.The results show that a cathodic Fenton process can occur when the Ti-0.3Mo-0.8Ni alloy material is used as cathode in solution containing ferric or ferrous ions; moreover,the reinforcement of cathodic Fenton process on the total organic carbon (TOC) removal rate of phenol is quite distinct.Among the metallic ions investigated,the ferric ion is the best catalyst for the electrochemical mineralization of phenol at initial...
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei Science Center of CAS(2015SRG-HSC048)+1 种基金cooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)CAS-TWAS Scholarship Program~~
文摘We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.
文摘The present study aims to develop effective adsorption and oxidation of synthetic dye in wastewater by using the newly synthesized iron-amended activated carbon. Recently synthetic dye-containing wastewater has gained more attention due to its mass discharge, high toxicity and low biodegradation. For enhancing adsorption of dye and oxidative regeneration of dye-exhausted activated carbon, the novel amendment of iron-deposited granular activated carbon (GAC) was developed. It was to amend ferrous ion onto the acid-pretreated GAC when pH of iron solution was higher than the pH at point of zero charge (pH, pzc) of the GAC. Methylene blue (MB) in water was adsorbed onto the acid-treated iron- amended GAC (Fe-GAC) followed by single or multiple applications of H2O2. Batch experiments were carried out to study the adsorption isotherm and kinetics indicating adsorption of MB onto the Fe-GAC followed Langmuir isotherm and the pseudo-second order kinetics. The Fe-GACshowed the maximum adsorption capacity (qm) of 238.1 ± 0.78 mg/g which was higher than the virgin GAC with qm of 175.4 ± 13.6 mg/g at 20?C, pH 6 and the initial concentration of 20 - 200 mg/L. The heterogeneous Fenton oxidation of MB in the Fe-GAC revealedthat increasing the H2O2 loading from 7 to 140 mmol H2O2/mmol MB led to enhancing the oxidation efficiency of MB in the GAC from 62.6% to 100% due to the increased generation of hydroxyl radicals. Further enhancement of oxidation of MB in the Fe-GAC was made by the multiple application of H2O2 while minimizing OH radical scavenging often occurring at high concentration of H2O2. Therefore, the acid-treated iron-amended GAC would provide excellent adsorption capacity for MB and high oxidation efficiency of MB in the GAC with multiple applications of H2O2 and optimum iron loading.
文摘An ultrasound-assisted heterogeneous catalytic oxidation process was applied to eliminate sulfur from commercial diesel fuel oil.The studied variables were catalyst concentration,type of catalyst(homogeneous or heterogeneous),oxidizing agent concentration,and the application of ultrasound energy.Supported catalysts were prepared by impregnation of coal fly ash with an iron(Ⅱ)sulfate aqueous solution using ultrasound energy.After drying,the catalyst was calcined at 500℃for 4 h.The oxidizing agent was hydrogen peroxide.Ultrasound energy was applied with a frequency of 47 kHz and an intensity of 147 W.Ethanol was employed for extracting the oxidized compounds from the hydrocarbon mixture.Coal fly ash and ethanol were used with the purpose of applying low-cost raw materials in chemical processes.It was found that under the studied conditions,increasing oxidizing agent concentration and the application of ultrasound energy can enhance the sulfur removal from commercial diesel fuel oil.Catalyst concentration did not play a significant role in the process.Similar results were obtained using homogeneous or heterogeneous catalyst,which is important since the heterogeneous catalyst could be recovered,reactivated,and used in many cycles.