To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vi...To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.展开更多
Viscose fiber templates(15 cm×15 cm×1 cm)were put into ZrOCl_(2) solutions of different concentrations(1,2 and 3 mol·L^(-1))and impregnated at different temperatures(20,40 and 60℃)for 20 h.After washin...Viscose fiber templates(15 cm×15 cm×1 cm)were put into ZrOCl_(2) solutions of different concentrations(1,2 and 3 mol·L^(-1))and impregnated at different temperatures(20,40 and 60℃)for 20 h.After washing,centrifugation and drying,ZrO_(2) fiber precursors were obtained.ZrO_(2) fibers were prepared by heat treatment of the precursors at different temperatures(600,800,1000 and 1200℃)for 2 h.The effects of the impregnation temperature,the impregnation solution concentration and the heat treatment temperature on the microstructure and the phase composition of the ZrO_(2) fibers were studied.The results show that with the increase of the impregnation temperature from 20℃to 60℃and the impregnation solution concentration increase from 1 mol·L^(-1) to 3 mol·L^(-1),the microstructure of fiber cross section changes from flat to cylindrical,and the average fiber diameter increases,indicating that the increase of the impregnation solution concentration and the impregnation temperature is beneficial to increasing the adsorption capacity of Zr4+on viscose fiber templates.After heat treatment,ZrO_(2) fiber mainly exists in the form of monoclinic ZrO_(2).With the increase of the heat treatment temperature,the grains in ZrO_(2) fibers become larger and the crystallinity degree increases,meanwhile the fiber surface undergoes a transition from smooth to small grains and then to cracks.展开更多
High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, resp...High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.展开更多
In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injecti...In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.展开更多
Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood ...Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture.展开更多
The steam-thermal method for refinery of highly-viscous oils and the process of propane-butane liquid extraction have been implemented for production of the impregnation material for carbon rock. The process of steam-...The steam-thermal method for refinery of highly-viscous oils and the process of propane-butane liquid extraction have been implemented for production of the impregnation material for carbon rock. The process of steam-thermal treatment has been carried out for highly-viscous oil from Ashalchinskoye accumulation with the “steam-oil” ratio changing from 1.1:1 to 1.4:1. The extraction process has been carried out at temperature T = 85°C and pressures from 4.5 to 8 MPa. Water absorption of carbonate rock has decreased to 0.34% as a result of SCF-impregnation process.展开更多
基金Projects (21207093,51004072) supported by the National Natural Science Foundation of China for YouthProject (LJQ2014023) supported by the Liaoning Excellent Talents in University,China+1 种基金Project (L20150178) supported by the General Scientific Research Projects Foundation of Liaoning Educational Committee,ChinaProject (N140303002) supported by the Fundamental Research Funds for the Central Universities,China
文摘To enhance the photocatalytic activity of B-BiVO4,Ni-doped B?BiVO4photocatalyst(Ni-B-BiVO4)was synthesized through sol-gel and impregnation method.The photocatalysts were characterized by XPS,XRD,SEM,EDS,BET and UV-Vis DRS techniques.The results showed that single or double doping did not change the crystalline structure and morphology,but the particle size decreased with Ni doping.The band gap energy absorption edge of Ni-B-BiVO4shifted to a longer wavelength compared with undoped,B or Ni single doped BiVO4.More V4+and surface hydroxyl oxygen were observed in BiVO4after Ni-B co-doping.When the optimal mass fraction of Ni is0.30%,the degradation rate of MO in50min is95%for0.3Ni-B-BiVO4sample which also can effectively degrade methyl blue(MB),acid orange(AOII)II and rhodamine B(RhB).The enhanced photocatalytic activity is attributed to the synergistic effects of B and Ni doping.
文摘Viscose fiber templates(15 cm×15 cm×1 cm)were put into ZrOCl_(2) solutions of different concentrations(1,2 and 3 mol·L^(-1))and impregnated at different temperatures(20,40 and 60℃)for 20 h.After washing,centrifugation and drying,ZrO_(2) fiber precursors were obtained.ZrO_(2) fibers were prepared by heat treatment of the precursors at different temperatures(600,800,1000 and 1200℃)for 2 h.The effects of the impregnation temperature,the impregnation solution concentration and the heat treatment temperature on the microstructure and the phase composition of the ZrO_(2) fibers were studied.The results show that with the increase of the impregnation temperature from 20℃to 60℃and the impregnation solution concentration increase from 1 mol·L^(-1) to 3 mol·L^(-1),the microstructure of fiber cross section changes from flat to cylindrical,and the average fiber diameter increases,indicating that the increase of the impregnation solution concentration and the impregnation temperature is beneficial to increasing the adsorption capacity of Zr4+on viscose fiber templates.After heat treatment,ZrO_(2) fiber mainly exists in the form of monoclinic ZrO_(2).With the increase of the heat treatment temperature,the grains in ZrO_(2) fibers become larger and the crystallinity degree increases,meanwhile the fiber surface undergoes a transition from smooth to small grains and then to cracks.
基金supported by the financial support of National Basic Research Program of China (2012CB723105)National Natural Science Foundation of China (20976117)+1 种基金Shanxi Province Natural Science Foundation(2010011014-3)Shanxi Province Basic Conditions Platform for Science and Technology Project (2010091015)
文摘High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough.
文摘In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.
基金This work was financially supported by National Natural Science Foundation of China(32201485)Natural Science Foundation of Hunan Province,China(2022JJ40863)+1 种基金Scientific Research Project of Hunan Provincial Education Department,China(21B0238)The Science and Technology Innovation Program of Hunan Province(2021RC4062).
文摘Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture.
文摘The steam-thermal method for refinery of highly-viscous oils and the process of propane-butane liquid extraction have been implemented for production of the impregnation material for carbon rock. The process of steam-thermal treatment has been carried out for highly-viscous oil from Ashalchinskoye accumulation with the “steam-oil” ratio changing from 1.1:1 to 1.4:1. The extraction process has been carried out at temperature T = 85°C and pressures from 4.5 to 8 MPa. Water absorption of carbonate rock has decreased to 0.34% as a result of SCF-impregnation process.