The myosin heavy chain(MyHC)is one of the major structural and contracting proteins of muscle.We have isolated the cDNA clone encoding MyHC of the grass carp,Ctenopharyngodon idella. The sequence comprises 5 934 bp,in...The myosin heavy chain(MyHC)is one of the major structural and contracting proteins of muscle.We have isolated the cDNA clone encoding MyHC of the grass carp,Ctenopharyngodon idella. The sequence comprises 5 934 bp,including a 5 814 bp open reading frame encoding an amino acid sequence of 1 937 residues.The deduced amino acid sequence showed 69%homology to rabbit fast skeletal MyHC and 73%–76%homology to the MyHCs from the mandarin fish,walleye pollack,white croaker,chum salmon,and carp.The putative sequences of subfragment-1 and the light meromyosin region showed 61.4%–80%homology to the corresponding regions of other fish MyHCs.The tissue-specific and developmental stage-specific expressions of the MyHC gene were analyzed by quantitative real-time PCR.The MyHC gene showed the highest expression in the muscles compared with the kidney,spleen and intestine.Developmentally,there was a gradual increase in MyHC mRNA expression from the neural formation stage to the tail bud stage.The highest expression was detected in hatching larva.Our work on the MyHC gene from the grass carp has provided useful information for fish molecular biology and fish genomics.展开更多
Autoimmune is involved in the pathogenesis of ventricular remodeling in acute myocardial infarction (AMI).In the present study, we investigated the effect of anti-cardiac myosin heavy chain antibodies (AMHCA) from pat...Autoimmune is involved in the pathogenesis of ventricular remodeling in acute myocardial infarction (AMI).In the present study, we investigated the effect of anti-cardiac myosin heavy chain antibodies (AMHCA) from patients with AMI on rat cardiomyocyte apoptosis.Cardiomyocyte apoptosis was observed and measured by DNA end labeling and Annexin-Ⅴ/PI double-staining assay.The expression of apoptosis related p53 and Bcl-2 protein and the second messenger calcium were detected respectively by Western blotting, patch clamp and confocal calcium imaging.The results showed that AMHCA was able to induce cardiomyocyte apoptosis in a dose dependent manner.Apoptosis-accelerating nucleoprotein p53 was up-regulated, while apoptosis-inhibiting cytoplasmic protein Bcl-2 was down-regulated.In parallel, cytoplasmic calcium concentration was elevated.There was no effect on L-type calcium currents.It is concluded that AMHCA in patients with AMI as a novel triggering factor can induce cardiomyocyte apoptosis, which contributes to ventricular remodeling.展开更多
Objective To study the effect of 4-6 weeks’ treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into contro...Objective To study the effect of 4-6 weeks’ treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4-6 weeks at an intensity of about 75% VO2max (18.5-24 m/min,gradient of 0°,each training session lasting 50 minutes,twice a day). The content of gastrocnemius MHC mRNA was tested by reverse transcription polymerase chain reaction (RT-PCR),and the changes of muscle fibre and its cross-section area (CSA) were measured using immunohistochemistry. Electric stimulation tests were used to determine the maximal tension of isometric contraction of the post-training gastrocnemius. Results ① After continuous treadmill training for 4-6 weeks,we found that the content of the total MHC,MHC Ⅰ,MHC Ⅱx,MHC Ⅱa mRNAs was 105%,105%,109% and 108% of that in the resting control group,respectively,and the MHC Ⅱb mRNA content did not change significantly. The percentage of MHC Ⅰ mRNA in the total MHC mRNA increased while that of MHC Ⅱ mRNA decreased after aerobic training. ② The slow type of fibre type Ⅰ was the main part of the MHC after training and the CSA of the muscle fibres increased simultaneously. ③ The maximal tension of isometric contraction by pulse stimulation of square wave in the training group increased significantly compared with that in the control group (P<0.01). Conclusion The findings indicate that aerobic exercise may promote an increase in the contractile function of MHC.展开更多
Myostatin is a major factor involved in the regulation of skeletal muscle protein mass. High myostatin levels have been associated with an increase in myotube shrinkage. Enhanced myostatin expression is caused by pro-...Myostatin is a major factor involved in the regulation of skeletal muscle protein mass. High myostatin levels have been associated with an increase in myotube shrinkage. Enhanced myostatin expression is caused by pro-catabolic reactions involving compounds such as tumor necrosis factor (TNF)-α. The present study investigated the effects of agaro-oligosaccharides (AOSs) on hypercatabolism of myotubes exposed to TNF-α. C2C12 myotubes exposed to TNF-α in the presence or absence of AOSs. Myotube exposure to TNF-α resulted in a reduction in the amount of myosin heavy chain (MyHC) protein and a decrease in myotube diameter, which was associated with increased myostatin mRNA expression. AOSs prevented TNF-α-induced MyHC protein loss and restored normal myostatin mRNA levels, with agarobiose and agarotetraose effectively suppressing the hyperexpression of the mRNA. In addition, expression levels of the known myostatin inhibitors, latent transforming growth factor beta binding protein 3 (Ltbp3) and growth and differentiation factor-associated serum protein 1 (Gasp1) mRNAs, decreased more in TNF-α-induced myotubes than in the TNF-α-free control, possibly resulting in myostatin upregulation. However, AOSs restored nearly normal expression levels of Ltbp3 and Gasp1 mRNA, potentially suppressing myostatin expression. These findings suggest that AOSs could prevent myotube shrinkage induced by TNF-α.展开更多
3-hydroxy-3methylglutaryl Coenzyme A reductase, the rate limiting enzyme of mevalonate pathway, generates, in addition to cholesterol, a range of products involved in several biological functions: oligoprenyl groups, ...3-hydroxy-3methylglutaryl Coenzyme A reductase, the rate limiting enzyme of mevalonate pathway, generates, in addition to cholesterol, a range of products involved in several biological functions: oligoprenyl groups, dolichol and ubiquinone. The latter, in particular, participates in electron transport chain and, in turn, in tissue energy supply. The enzyme is inhibited by statins that, besides lowering cholesterolemia, seem to impair human energy-dependent myocardial functions (e.g. stroke volume, cardiac output, and contractile index). The modulation of heart contractile properties could be explained by the decrease of ventricle ubiquinone content and/or by putative changes in proportion of the different myosin heavy chain isoforms. Since we previously demonstrated that chronic statin treatment modifies myosin heavy chain isoform pattern in skeletal muscle impairing its functional properties, this work was aimed at investigating the effects of statin chronic treatment on both ventricle ubiquinone content and myosin heavy chain isoforms. Our results showed that simvastatin treatment leads to a reduced amount of rat ventricle ubiquinone and to β myosin heavy chain disappearance. Thus, statins which are prescribed to prevent cardiovascular disease, might induce cardiac metabolic and structural modifications whose functional implications on contractility are still to be established and carefully considered.展开更多
Objective To explore the molecular mechanism underlying the decreased velocity of tension rise in rat myocardium during congestive heart failure (CHF) and left ventricular hypertrophy (LVH) induced by aortic stenosis...Objective To explore the molecular mechanism underlying the decreased velocity of tension rise in rat myocardium during congestive heart failure (CHF) and left ventricular hypertrophy (LVH) induced by aortic stenosis.Methods The maximum velocity of tension rise (+dT/dtmax) was measured in left ventricular papillary muscle and the mRNA level of myosin heavy chain (MHC) isoforms in the left ventricle were detected by Northern blot analysis.Results The value of +dT/dtmax in CHF and LVH group were 64.17% and 37.15% lower than sham-operated controls (Sham) (P<0.01); values in the CHF group were 42.99% lower than that of LVH (P<0.01). The level of α-MHC mRNA in LVH was not different from that of the Sham (P>0.05), but decreased significantly in CHF to 42.3% of Sham and 56.1% of LVH (P<0.01). The level of β-MHC mRNA was up-regulated by 88.3% (P<0.01) in LVH compared with Sham and the level of β-MHC in CHF was 1.5-fold and 3.7-fold higher than that in LVH and Sham respectively (P<0.01). The ratio of α-MHC/β-MHC mRNA in LVH and CHF decreased to 42.4% and 9.8% respectively of the value in Sham (P<0.01). Correlation between α-MHC/β-MHC mRNA level and +dT/dtmax was analyzed which showed that these values were positively correlated with a correlation coefficient of 0.875 (P<0.01).Conclusion The decreased ratio of α-MHC/β-MHC mRNA was the major molecular mechanism underlying the decreased +dT/dtmax in CHF and LVH myocardium. The decreased ratio of α-MHC/β-MHC mRNA in LVH was mainly due to the up regulation of β-MHC mRNA while in CHF both down regulation of α-MHC and up regulation of β-MHC were involved.展开更多
Background and objective:Botulinum toxin type A(BoNT/A)is a metalloprotease that blocks synaptic transmission via the cleavage of a synaptosomal-associated protein of 25 kDa(SNAP-25).It has gained widespread use as a ...Background and objective:Botulinum toxin type A(BoNT/A)is a metalloprotease that blocks synaptic transmission via the cleavage of a synaptosomal-associated protein of 25 kDa(SNAP-25).It has gained widespread use as a treatment for cerebral palsy and skeletal muscle hypertrophy.In China,Chinese botulinum toxin type A(CBTX-A),a type of BoNT/A,is in widespread clinical use.However,the changes in the morphological and biochemical properties of treated muscles and in remote muscles from the CBTX-A injection site are relatively unknown.Therefore,we investigated the changes in histomorphology and myosin heavy chain(MyHC)isoform composition and distribution in rat gastrocnemius muscles after intramuscular injection of CBTX-A.Methods:The weakness of the injected muscles was assessed periodically to identify their functional deficiency.Muscle slices were stained with hematoxylin-eosin(HE)and adenosine triphosphatase(ATPase).MyHC isoform composition was analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis(SDS-PAGE)to uncover changes in morphological and biochemical properties.Results:Our findings demonstrate that following injection of CBTX-A 5 U into rat gastrocnemius muscles,shifts in MyHC isoform composition emerged on the third day after injection and peaked in the fourth week.The composition remained distinctly different from that of the control group after the twelfth week.More specifically,there was a decrease in the proportion of the type IIb isoform and an increase in the proportions of type IIx,type IIa,and type I isoforms.Conclusions:Data revealed that CBTX-A led to a shift in MyHC composition towards slower isoforms and that the MyHC composition remained far from normal six months after a single injection.However,no noticeable remote muscle weakness was induced.展开更多
Background Hypertrophic cardiomyopathy (HCM) is a form of cardiomyopathy with an autosomal dominant inherited disease, which is caused by mutations in at least one of the sarcomeric protein genes. Mutations in the b...Background Hypertrophic cardiomyopathy (HCM) is a form of cardiomyopathy with an autosomal dominant inherited disease, which is caused by mutations in at least one of the sarcomeric protein genes. Mutations in the beta-myosin heavy chain (β-MHC) are the most common cause of HCM. This study was to reveal the disease-causing gene mutations in Chinese population with HCM, and to analyze the correlation between the genotype and phenotype. Methods The exons 3 to 26 of MYH7 were amplified by PCR, and the PCR products were sequenced in five non-kin HCM patients. A 17-year-old patient was detected to be an Arg723Gly mutation carrier. Then his family was gene-screened, and the correlation between genotype and phenotype was analyzed. Results The mutation of Arg723Gly in a Chinese family with HCM was detected for the first time. With a C-G transversion in nucleotide 13 619 of the MYH7 gene, located at the essential light chain interacting region in S1, the replacement of arginine by glycine took place at amino acid residue 723. A two-dimensional echocardiogram showed moderate asymmetrical septal hypertrophy with left atria enlargement. There was no obstruction in the left ventricular outflow tract. In his family, a total of 13 individuals were diagnosed HCM and 5 of them were dead of congestive heart failure at a mean age of 66-year-old. Eight living members were all detected to carry the mutation, in which 3 developed progressive heart failure. Moreover, the heart function of the people evidently deteriorates when their age are older than 50. The mutation and the disease show co-separated. Conclusion The Arg723Gly mutation is a malignant type. In Chinese the mutation has the similar characters to the former report but has low degree malignant.展开更多
In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expressio...In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in longissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC IIb was dramatically decreased. However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC IIb mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I, IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.展开更多
We have analyzed the exons 13, 16, 21 and 23 of cardiac myosin heavy chain gene in 32 Chinese patients with hypertrophic cardiomyopathy by using PCR-single strand conformation polymorphism (PCR-SSCP) procedure. The re...We have analyzed the exons 13, 16, 21 and 23 of cardiac myosin heavy chain gene in 32 Chinese patients with hypertrophic cardiomyopathy by using PCR-single strand conformation polymorphism (PCR-SSCP) procedure. The result showed an altered SSCP of the exon 13 in one patient. Sequencing analysis revealed that the patient had a G to T transversion in the codon 383, resulting in the substitution of Lys by Asn. Beacause the missense mutation was found at the residue highly conserved through species evolution, this mutation is likely, to be the cause of hypertrophic cardiomyopathy in this patient. This is the first report of a mutant cardiac β-MHC gene in the Chinese population. Also, it is a novel missense mutation of the cardiac β-MHC gene.展开更多
The aim of this short review is to describe the role of myosin isoforms during the adaptation of skeletal muscle to prolonged physical activity (for example endurance exercise) and to show the coordination between cha...The aim of this short review is to describe the role of myosin isoforms during the adaptation of skeletal muscle to prolonged physical activity (for example endurance exercise) and to show the coordination between changes in muscle oxidative capacity and myofibrillar apparatus in slow-twitch and fast-twitch muscles. Adaptational changes in myosin isoforms during long lasting muscle activity (decrease of MyHC IIb isoforms relative content and increase of that MyHC IIa and decrease of MyLC 1 fast isoforms in fast-twitch muscles) are in good coordination with changes of muscle oxidative capacity. These changes show that during regular endurance exercise fast-twitch muscle fibers (type IIA) are also recruited and create the potential source of increase in endurance capacity during the process of adaptation to the prolonged physical activity.展开更多
目的:提高对非肌性肌球蛋白重链9基因(myosin heavy chain 9,nonmuscle,MYH9)突变相关疾病的认识。方法:报告一个MYH9相关疾病家系的临床及实验室检查资料,包括外周血和骨髓涂片的细胞形态学检查(瑞姬染色),外周血超微结构检查,流式细...目的:提高对非肌性肌球蛋白重链9基因(myosin heavy chain 9,nonmuscle,MYH9)突变相关疾病的认识。方法:报告一个MYH9相关疾病家系的临床及实验室检查资料,包括外周血和骨髓涂片的细胞形态学检查(瑞姬染色),外周血超微结构检查,流式细胞术分析血小板膜糖蛋白,应用逆转录-聚合酶链反应和直接测序的方法分析MYH9 mRNA,应用聚合酶链反应和直接测序方法分析MYH9基因。结果:患儿及其父亲均有巨大血小板、血小板减少和粒细胞内包涵体(Dhle样小体)。患儿及其父亲血小板膜糖蛋白GPIb均轻度降低。mRNA和基因组DNA分析均证实,患儿存在杂合的碱基替代突变(5797C>T),使第1933位密码子CGA转为终止密码子TGA。基因组DNA分析显示,其父亲携带有与患儿相同的突变。结论:本例患儿及其父亲具有巨大血小板、血小板减少、粒细胞内包涵体和MYH9基因点突变,MYH9相关疾病的诊断成立。展开更多
目的观察缺氧及缺氧复合运动条件下大鼠心肌重塑与肌球蛋白重链(myosin heavy chain,MHC)异构体组成的变化。方法Wisatar大鼠随机分为4组平原对照组、缺氧组、平原运动组和缺氧复合运动组。缺氧复合运动组大鼠持续暴露于模拟海拔5000m高...目的观察缺氧及缺氧复合运动条件下大鼠心肌重塑与肌球蛋白重链(myosin heavy chain,MHC)异构体组成的变化。方法Wisatar大鼠随机分为4组平原对照组、缺氧组、平原运动组和缺氧复合运动组。缺氧复合运动组大鼠持续暴露于模拟海拔5000m高原5周,每天降至4000m高原进行游泳运动1h(6d/周),运动结束后回升至5000m;缺氧组大鼠同时在低压舱内相同海拔高度饲养,但不进行游泳运动;平原运动组和平原对照组在舱外同时饲养,其中平原运动组每天进行游泳运动1h(6d/周)。在末次运动结束后24h处死大鼠,分离左、右心室,称重并计算左、右心室重量指数。用含10%甘油的SDS-PAGE电泳分离左、右心室MHC异构体,观察心室肌MHC异构体组成变化。结果缺氧35d大鼠右心室重量指数增加,缺氧复合运动组大鼠左、右心室重量指数均增加。缺氧组右室MHC异构体组成比例与平原对照组相比无显著变化,平原运动组右室α-MHC异构体比例显著高于平原对照组,缺氧复合运动组右室α-MHC异构体比例显著高于平原对照组和缺氧组,低于平原运动组。左室MHC异构体组成比例变化趋势与右心室相似。结论缺氧复合运动条件下,心肌纤维MHC异构体由β-MHC向α-MHC转换,可能是缺氧条件下适度运动促进机体对高原习服适应的机制之一。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.30972263,30771644)the Natural Science Foundation of HunanProvince(No.09jj6037)
文摘The myosin heavy chain(MyHC)is one of the major structural and contracting proteins of muscle.We have isolated the cDNA clone encoding MyHC of the grass carp,Ctenopharyngodon idella. The sequence comprises 5 934 bp,including a 5 814 bp open reading frame encoding an amino acid sequence of 1 937 residues.The deduced amino acid sequence showed 69%homology to rabbit fast skeletal MyHC and 73%–76%homology to the MyHCs from the mandarin fish,walleye pollack,white croaker,chum salmon,and carp.The putative sequences of subfragment-1 and the light meromyosin region showed 61.4%–80%homology to the corresponding regions of other fish MyHCs.The tissue-specific and developmental stage-specific expressions of the MyHC gene were analyzed by quantitative real-time PCR.The MyHC gene showed the highest expression in the muscles compared with the kidney,spleen and intestine.Developmentally,there was a gradual increase in MyHC mRNA expression from the neural formation stage to the tail bud stage.The highest expression was detected in hatching larva.Our work on the MyHC gene from the grass carp has provided useful information for fish molecular biology and fish genomics.
基金supported by a grant from National Key Basic Research Program of China (No.2007CB512000,Sub-Project No.2007CB512005)
文摘Autoimmune is involved in the pathogenesis of ventricular remodeling in acute myocardial infarction (AMI).In the present study, we investigated the effect of anti-cardiac myosin heavy chain antibodies (AMHCA) from patients with AMI on rat cardiomyocyte apoptosis.Cardiomyocyte apoptosis was observed and measured by DNA end labeling and Annexin-Ⅴ/PI double-staining assay.The expression of apoptosis related p53 and Bcl-2 protein and the second messenger calcium were detected respectively by Western blotting, patch clamp and confocal calcium imaging.The results showed that AMHCA was able to induce cardiomyocyte apoptosis in a dose dependent manner.Apoptosis-accelerating nucleoprotein p53 was up-regulated, while apoptosis-inhibiting cytoplasmic protein Bcl-2 was down-regulated.In parallel, cytoplasmic calcium concentration was elevated.There was no effect on L-type calcium currents.It is concluded that AMHCA in patients with AMI as a novel triggering factor can induce cardiomyocyte apoptosis, which contributes to ventricular remodeling.
基金supported by 863 Program Key Project (2007AA042100)the Natural Science Foundation of Shaanxi Province (No.2007C216)
文摘Objective To study the effect of 4-6 weeks’ treadmill training of male SD rats on the contractile function of their gastrocnemius myosin heavy chain (MHC). Methods Forty male SD rats were randomly divided into control group and training group. The treadmill training of the training group rats was incessantly performed for 4-6 weeks at an intensity of about 75% VO2max (18.5-24 m/min,gradient of 0°,each training session lasting 50 minutes,twice a day). The content of gastrocnemius MHC mRNA was tested by reverse transcription polymerase chain reaction (RT-PCR),and the changes of muscle fibre and its cross-section area (CSA) were measured using immunohistochemistry. Electric stimulation tests were used to determine the maximal tension of isometric contraction of the post-training gastrocnemius. Results ① After continuous treadmill training for 4-6 weeks,we found that the content of the total MHC,MHC Ⅰ,MHC Ⅱx,MHC Ⅱa mRNAs was 105%,105%,109% and 108% of that in the resting control group,respectively,and the MHC Ⅱb mRNA content did not change significantly. The percentage of MHC Ⅰ mRNA in the total MHC mRNA increased while that of MHC Ⅱ mRNA decreased after aerobic training. ② The slow type of fibre type Ⅰ was the main part of the MHC after training and the CSA of the muscle fibres increased simultaneously. ③ The maximal tension of isometric contraction by pulse stimulation of square wave in the training group increased significantly compared with that in the control group (P<0.01). Conclusion The findings indicate that aerobic exercise may promote an increase in the contractile function of MHC.
文摘Myostatin is a major factor involved in the regulation of skeletal muscle protein mass. High myostatin levels have been associated with an increase in myotube shrinkage. Enhanced myostatin expression is caused by pro-catabolic reactions involving compounds such as tumor necrosis factor (TNF)-α. The present study investigated the effects of agaro-oligosaccharides (AOSs) on hypercatabolism of myotubes exposed to TNF-α. C2C12 myotubes exposed to TNF-α in the presence or absence of AOSs. Myotube exposure to TNF-α resulted in a reduction in the amount of myosin heavy chain (MyHC) protein and a decrease in myotube diameter, which was associated with increased myostatin mRNA expression. AOSs prevented TNF-α-induced MyHC protein loss and restored normal myostatin mRNA levels, with agarobiose and agarotetraose effectively suppressing the hyperexpression of the mRNA. In addition, expression levels of the known myostatin inhibitors, latent transforming growth factor beta binding protein 3 (Ltbp3) and growth and differentiation factor-associated serum protein 1 (Gasp1) mRNAs, decreased more in TNF-α-induced myotubes than in the TNF-α-free control, possibly resulting in myostatin upregulation. However, AOSs restored nearly normal expression levels of Ltbp3 and Gasp1 mRNA, potentially suppressing myostatin expression. These findings suggest that AOSs could prevent myotube shrinkage induced by TNF-α.
文摘3-hydroxy-3methylglutaryl Coenzyme A reductase, the rate limiting enzyme of mevalonate pathway, generates, in addition to cholesterol, a range of products involved in several biological functions: oligoprenyl groups, dolichol and ubiquinone. The latter, in particular, participates in electron transport chain and, in turn, in tissue energy supply. The enzyme is inhibited by statins that, besides lowering cholesterolemia, seem to impair human energy-dependent myocardial functions (e.g. stroke volume, cardiac output, and contractile index). The modulation of heart contractile properties could be explained by the decrease of ventricle ubiquinone content and/or by putative changes in proportion of the different myosin heavy chain isoforms. Since we previously demonstrated that chronic statin treatment modifies myosin heavy chain isoform pattern in skeletal muscle impairing its functional properties, this work was aimed at investigating the effects of statin chronic treatment on both ventricle ubiquinone content and myosin heavy chain isoforms. Our results showed that simvastatin treatment leads to a reduced amount of rat ventricle ubiquinone and to β myosin heavy chain disappearance. Thus, statins which are prescribed to prevent cardiovascular disease, might induce cardiac metabolic and structural modifications whose functional implications on contractility are still to be established and carefully considered.
文摘Objective To explore the molecular mechanism underlying the decreased velocity of tension rise in rat myocardium during congestive heart failure (CHF) and left ventricular hypertrophy (LVH) induced by aortic stenosis.Methods The maximum velocity of tension rise (+dT/dtmax) was measured in left ventricular papillary muscle and the mRNA level of myosin heavy chain (MHC) isoforms in the left ventricle were detected by Northern blot analysis.Results The value of +dT/dtmax in CHF and LVH group were 64.17% and 37.15% lower than sham-operated controls (Sham) (P<0.01); values in the CHF group were 42.99% lower than that of LVH (P<0.01). The level of α-MHC mRNA in LVH was not different from that of the Sham (P>0.05), but decreased significantly in CHF to 42.3% of Sham and 56.1% of LVH (P<0.01). The level of β-MHC mRNA was up-regulated by 88.3% (P<0.01) in LVH compared with Sham and the level of β-MHC in CHF was 1.5-fold and 3.7-fold higher than that in LVH and Sham respectively (P<0.01). The ratio of α-MHC/β-MHC mRNA in LVH and CHF decreased to 42.4% and 9.8% respectively of the value in Sham (P<0.01). Correlation between α-MHC/β-MHC mRNA level and +dT/dtmax was analyzed which showed that these values were positively correlated with a correlation coefficient of 0.875 (P<0.01).Conclusion The decreased ratio of α-MHC/β-MHC mRNA was the major molecular mechanism underlying the decreased +dT/dtmax in CHF and LVH myocardium. The decreased ratio of α-MHC/β-MHC mRNA in LVH was mainly due to the up regulation of β-MHC mRNA while in CHF both down regulation of α-MHC and up regulation of β-MHC were involved.
基金Project (No.491030-w10011) supported by the Zhejiang Provincial Natural Science Foundation of China
文摘Background and objective:Botulinum toxin type A(BoNT/A)is a metalloprotease that blocks synaptic transmission via the cleavage of a synaptosomal-associated protein of 25 kDa(SNAP-25).It has gained widespread use as a treatment for cerebral palsy and skeletal muscle hypertrophy.In China,Chinese botulinum toxin type A(CBTX-A),a type of BoNT/A,is in widespread clinical use.However,the changes in the morphological and biochemical properties of treated muscles and in remote muscles from the CBTX-A injection site are relatively unknown.Therefore,we investigated the changes in histomorphology and myosin heavy chain(MyHC)isoform composition and distribution in rat gastrocnemius muscles after intramuscular injection of CBTX-A.Methods:The weakness of the injected muscles was assessed periodically to identify their functional deficiency.Muscle slices were stained with hematoxylin-eosin(HE)and adenosine triphosphatase(ATPase).MyHC isoform composition was analyzed by sodium dodecyl sulfatepolyacrylamide gel electrophoresis(SDS-PAGE)to uncover changes in morphological and biochemical properties.Results:Our findings demonstrate that following injection of CBTX-A 5 U into rat gastrocnemius muscles,shifts in MyHC isoform composition emerged on the third day after injection and peaked in the fourth week.The composition remained distinctly different from that of the control group after the twelfth week.More specifically,there was a decrease in the proportion of the type IIb isoform and an increase in the proportions of type IIx,type IIa,and type I isoforms.Conclusions:Data revealed that CBTX-A led to a shift in MyHC composition towards slower isoforms and that the MyHC composition remained far from normal six months after a single injection.However,no noticeable remote muscle weakness was induced.
文摘Background Hypertrophic cardiomyopathy (HCM) is a form of cardiomyopathy with an autosomal dominant inherited disease, which is caused by mutations in at least one of the sarcomeric protein genes. Mutations in the beta-myosin heavy chain (β-MHC) are the most common cause of HCM. This study was to reveal the disease-causing gene mutations in Chinese population with HCM, and to analyze the correlation between the genotype and phenotype. Methods The exons 3 to 26 of MYH7 were amplified by PCR, and the PCR products were sequenced in five non-kin HCM patients. A 17-year-old patient was detected to be an Arg723Gly mutation carrier. Then his family was gene-screened, and the correlation between genotype and phenotype was analyzed. Results The mutation of Arg723Gly in a Chinese family with HCM was detected for the first time. With a C-G transversion in nucleotide 13 619 of the MYH7 gene, located at the essential light chain interacting region in S1, the replacement of arginine by glycine took place at amino acid residue 723. A two-dimensional echocardiogram showed moderate asymmetrical septal hypertrophy with left atria enlargement. There was no obstruction in the left ventricular outflow tract. In his family, a total of 13 individuals were diagnosed HCM and 5 of them were dead of congestive heart failure at a mean age of 66-year-old. Eight living members were all detected to carry the mutation, in which 3 developed progressive heart failure. Moreover, the heart function of the people evidently deteriorates when their age are older than 50. The mutation and the disease show co-separated. Conclusion The Arg723Gly mutation is a malignant type. In Chinese the mutation has the similar characters to the former report but has low degree malignant.
基金Shandong agricultural breeding project(Grant No. 2006LZ08)Shandong Academy Agricultural Sciences fund for young scholars (Grant No. 2005YQ041)
文摘In order to explain the mechanism of high meat quality in Laiwu pigs and investigate the relation between myosin heavy chains (MyHC) composition and meat quality, meat quality analysis was conducted and mRNA expression of MyHC I, IIa, IIx, IIb was quantified by real-time fluorescence PCR in longissimus muscle (LM) and semimembranous muscle of Laiwu pigs and Duroc. The result indicated that, compared with Duroc, mRNA expression of MyHC IIa, IIx in LM and semimembranous muscle of Laiwu pigs was significantly increased, mRNA expression of MyHC IIb was dramatically decreased. However, the expression of MyHC I was not significantly affected by breeds. The correlation between mRNA expression of MyHC I, IIa, IIx in LM and meat color, pH value, marbling, intramuscular fat content was positive, but shear value of LM was negative. The relation between MyHC IIb mRNA expression and marbling, intramuscular fat content was dramatically negative, whereas shear value was strikingly positive, as well as fiber diameter, but without reaching statistical significance. Therefore, the composition of MyHC I, IIa, IIx, IIb affected meat quality, furthermore, expression of MyHC I, IIa, IIx, IIb mRNA prominently influenced meat characteristics, especially edible quality of muscle, suggesting that mRNA expression level of MyHC I, IIa, IIx, IIb can exactly and impersonally estimate meat quality.
文摘We have analyzed the exons 13, 16, 21 and 23 of cardiac myosin heavy chain gene in 32 Chinese patients with hypertrophic cardiomyopathy by using PCR-single strand conformation polymorphism (PCR-SSCP) procedure. The result showed an altered SSCP of the exon 13 in one patient. Sequencing analysis revealed that the patient had a G to T transversion in the codon 383, resulting in the substitution of Lys by Asn. Beacause the missense mutation was found at the residue highly conserved through species evolution, this mutation is likely, to be the cause of hypertrophic cardiomyopathy in this patient. This is the first report of a mutant cardiac β-MHC gene in the Chinese population. Also, it is a novel missense mutation of the cardiac β-MHC gene.
文摘The aim of this short review is to describe the role of myosin isoforms during the adaptation of skeletal muscle to prolonged physical activity (for example endurance exercise) and to show the coordination between changes in muscle oxidative capacity and myofibrillar apparatus in slow-twitch and fast-twitch muscles. Adaptational changes in myosin isoforms during long lasting muscle activity (decrease of MyHC IIb isoforms relative content and increase of that MyHC IIa and decrease of MyLC 1 fast isoforms in fast-twitch muscles) are in good coordination with changes of muscle oxidative capacity. These changes show that during regular endurance exercise fast-twitch muscle fibers (type IIA) are also recruited and create the potential source of increase in endurance capacity during the process of adaptation to the prolonged physical activity.
文摘目的:提高对非肌性肌球蛋白重链9基因(myosin heavy chain 9,nonmuscle,MYH9)突变相关疾病的认识。方法:报告一个MYH9相关疾病家系的临床及实验室检查资料,包括外周血和骨髓涂片的细胞形态学检查(瑞姬染色),外周血超微结构检查,流式细胞术分析血小板膜糖蛋白,应用逆转录-聚合酶链反应和直接测序的方法分析MYH9 mRNA,应用聚合酶链反应和直接测序方法分析MYH9基因。结果:患儿及其父亲均有巨大血小板、血小板减少和粒细胞内包涵体(Dhle样小体)。患儿及其父亲血小板膜糖蛋白GPIb均轻度降低。mRNA和基因组DNA分析均证实,患儿存在杂合的碱基替代突变(5797C>T),使第1933位密码子CGA转为终止密码子TGA。基因组DNA分析显示,其父亲携带有与患儿相同的突变。结论:本例患儿及其父亲具有巨大血小板、血小板减少、粒细胞内包涵体和MYH9基因点突变,MYH9相关疾病的诊断成立。
文摘目的观察缺氧及缺氧复合运动条件下大鼠心肌重塑与肌球蛋白重链(myosin heavy chain,MHC)异构体组成的变化。方法Wisatar大鼠随机分为4组平原对照组、缺氧组、平原运动组和缺氧复合运动组。缺氧复合运动组大鼠持续暴露于模拟海拔5000m高原5周,每天降至4000m高原进行游泳运动1h(6d/周),运动结束后回升至5000m;缺氧组大鼠同时在低压舱内相同海拔高度饲养,但不进行游泳运动;平原运动组和平原对照组在舱外同时饲养,其中平原运动组每天进行游泳运动1h(6d/周)。在末次运动结束后24h处死大鼠,分离左、右心室,称重并计算左、右心室重量指数。用含10%甘油的SDS-PAGE电泳分离左、右心室MHC异构体,观察心室肌MHC异构体组成变化。结果缺氧35d大鼠右心室重量指数增加,缺氧复合运动组大鼠左、右心室重量指数均增加。缺氧组右室MHC异构体组成比例与平原对照组相比无显著变化,平原运动组右室α-MHC异构体比例显著高于平原对照组,缺氧复合运动组右室α-MHC异构体比例显著高于平原对照组和缺氧组,低于平原运动组。左室MHC异构体组成比例变化趋势与右心室相似。结论缺氧复合运动条件下,心肌纤维MHC异构体由β-MHC向α-MHC转换,可能是缺氧条件下适度运动促进机体对高原习服适应的机制之一。