Black phosphorus(BP),an interesting and multi-functional non-metal material,has attracted widespread attention.In this work,2D BP/2D g-C3N4 heterostructure had been fabricated at extremely low temperature,which was us...Black phosphorus(BP),an interesting and multi-functional non-metal material,has attracted widespread attention.In this work,2D BP/2D g-C3N4 heterostructure had been fabricated at extremely low temperature,which was used to reduce CO2 for the first time.With introduction of 2D BP,the separation of photogenerated holes and electrons was extremely boosted,and composites showed excellent photocatalytic performance(CO2 to CO).Meanwhile,the targeted composite could keep high selectivity for CO generation and CO generation rate can be up to 187.7μmol g−1 h^−1.The formation process of the unique heterostructure and the key factor affecting the photocatalytic performance were also discussed.This work provides a new approach for designing metal free photocatalyst,which is used for CO2 reduction.展开更多
Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as ...Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.展开更多
基金supported by the National Natural Science Foundation of China(21676128,21776118,51902138)Hightech Research Key laboratory of Zhenjiang(SS2018002)+4 种基金Jiangsu Funds for Distinguished Young Scientists(BK20190045)Natural Science Foundation of Jiangsu Province(BK20190835)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(KFKT2019002)Construction funding of High-level teachers,Jiangsu University(4111510008)the High Performance Computing Platform of Jiangsu University.
文摘Black phosphorus(BP),an interesting and multi-functional non-metal material,has attracted widespread attention.In this work,2D BP/2D g-C3N4 heterostructure had been fabricated at extremely low temperature,which was used to reduce CO2 for the first time.With introduction of 2D BP,the separation of photogenerated holes and electrons was extremely boosted,and composites showed excellent photocatalytic performance(CO2 to CO).Meanwhile,the targeted composite could keep high selectivity for CO generation and CO generation rate can be up to 187.7μmol g−1 h^−1.The formation process of the unique heterostructure and the key factor affecting the photocatalytic performance were also discussed.This work provides a new approach for designing metal free photocatalyst,which is used for CO2 reduction.
基金supported by the National Natural Science Foundation of China (51672089)the Industry and Research Collaborative Innovation Major Projects of Guangzhou (201508020098)+1 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7)the Hunan Key Laboratory of Applied Environmental Photocatalysis (Changsha University) (CCSU-XT-04)~~
文摘Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition.Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation.The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4.WO3/g-C3N4/Ni(OH)x with 20 wt%defective WO3 and 4.8 wt%Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h),which was 5.7,10.8 and 230 times higher than those of g-C3N4/4.8 wt%Ni(OH)x,20 wt%WO3/C3N4 and g-C3N4 photocatalysts,respectively.The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction(WO3/g-C3N4) and loaded cocatalysts(Ni(OH)x),which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics.The electron spin resonance spectra of ·O2^- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism.The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multiple-heterojunction material for photocatalytic applications.