Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk...Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.展开更多
The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to atte...The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.展开更多
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct...The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.展开更多
Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a ...Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.展开更多
Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic c...Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.展开更多
The algebraic solitary wave and its associated eigenvalue problem in a deep stratified fluid with a free surface and a shallow upper layer were studied. And its vertical structure was examined. An exact solution for t...The algebraic solitary wave and its associated eigenvalue problem in a deep stratified fluid with a free surface and a shallow upper layer were studied. And its vertical structure was examined. An exact solution for the derived 2D Benjamin-Ono equation was obtained, and physical explanation was given with the corresponding dispersion relation. As a special case, the vertical structure of the weakly nonlinear internal wave for the Holmboe density distribution was numerically investigated, and the propagating mechanism of the internal wave was studied by using the ray theory.展开更多
Two-dimensional(2D)magnetic materials have attracted tremendous research interest because of the promising application in the next-generation microelectronic devices.Here,by the first-principles calculations,we propos...Two-dimensional(2D)magnetic materials have attracted tremendous research interest because of the promising application in the next-generation microelectronic devices.Here,by the first-principles calculations,we propose a twodimensional ferromagnetic material with high Curie temperature,manganese tetranitride MnN4monolayer,which is a square-planar lattice made up of only one layer of atoms.The structure is demonstrated to be stable by the phonon spectra and the molecular dynamic simulations,and the stability is ascribed to theπ–d conjugation betweenπorbital of N=N bond and d orbital of Mn.More interestingly,the MnN_(4)monolayer displays robust 2D ferromagnetism,which originates from the strong exchange couplings between Mn atoms due to theπ–d conjugation.The high critical temperature of 247 K is determined by solving the Heisenberg model using the Monte Carlo method.展开更多
Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic r...Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.展开更多
Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries.Herein,a spherical structure consists of ultrathin layered Ti_(3)C_(2)T_(x)-TiN ...Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries.Herein,a spherical structure consists of ultrathin layered Ti_(3)C_(2)T_(x)-TiN heterostructures(MX-TiN)through in-situ nitridation method is reported.Through controllable nitridation,highly conductive TiN layer grew on the surface and close coupled with interior MXene to form unique 2D heterostructures.The ultrathin heterostructure with only several nanometers in thickness enables outstanding ability to shorten electrons diffusion distance during electrochemical reactions and enlarge active surface with abundant adsorptive and catalytic sites.Moreover,the(001)surface of TiN is dominated by metallic Ti-3d states,which ensures fast transmitting electrons from high conductive MX-TiN matrix and thus guarantees efficient catalytic performance.Calculations and experiments demonstrate that polysulfides are strongly immobilized on MX-TiN,meanwhile the bidirectional reaction kinetics are catalytically enhanced by reducing the conversion barrier between liquid LiPSs and solid Li_(2)S_(2)/Li_(2)S.As a result,the S/MX-TiN cathode achieves excellent long-term cyclability with extremely low-capacity fading rate of 0.022%over 1000 cycles and remarkable areal capacity of 8.27 mAh cm^(−2) at high sulfur loading and lean electrolytes.展开更多
Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for v...Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for various electrocatalytic reactions.Herein,we reviewed recent advances on metallenes in structural regulations including defect,phase,strain,interface,doping,and alloying engineering strategies and their applications in energy electrocatalytic reactions involving oxygen reduction reaction,carbon dioxide reduction reaction,hydrogen evolution reaction,and small molecules oxidation reaction.Finally,we proposed the future challenges and directions in this emerging area.展开更多
Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-val...Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.展开更多
We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent devel...We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.展开更多
In recent years, structure design and predictions based on global optimization approach as implemented in CALYPSO software have gained great success in accelerating the discovery of novel two-dimensional(2D) materials...In recent years, structure design and predictions based on global optimization approach as implemented in CALYPSO software have gained great success in accelerating the discovery of novel two-dimensional(2D) materials. Here we highlight some most recent research progress on the prediction of novel 2D structures, involving elements, metal-free and metal-containing compounds using CALYPSO package. Particular emphasis will be given to those 2D materials that exhibit unique electronic and magnetic properties with great potentials for applications in novel electronics, optoelectronics,magnetronics, spintronics, and photovoltaics. Finally, we also comment on the challenges and perspectives for future discovery of multi-functional 2D materials.展开更多
We use the strong field approximation with a time window function controlling the release time of electrons to study the intra-cycle and inter-cycle interferences in few-cycle intense laser pulses impinging on He. The...We use the strong field approximation with a time window function controlling the release time of electrons to study the intra-cycle and inter-cycle interferences in few-cycle intense laser pulses impinging on He. The diffraction fringes, i.e., the vertical stripe-like structure, observed in the experimental two-dimensional photoelectron momentum distributions of Gopal et al. (2009 Phys. Rev. Lett. 103 053001) have been attributed to the interplay of the intra- and inter-cycle interferences. The pure numerical calculations by solving the time-dependent Schrrdinger equation are also performed and the results are compared with the experimental measurements directly. It has been found that the position of the stripe-like structure can be used to determine the duration of the laser pulses used in experiments.展开更多
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits.However,to provide stronger field confinement,larger wid...Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits.However,to provide stronger field confinement,larger width of strip is required to load deeper grooves,which is cumbersome in modern large-scale integrated circuits and chips.In this work,a new spoof SPP transmission line (TL) with zigzag grooves is proposed.This new structure can achieve stronger field confinement compared to conventional one with the same strip width.In other words,the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size.Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs.Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size.Furthermore,two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration.Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL.Hence,this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.展开更多
An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system, space group P1 with a = 7.0124(11), b ...An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system, space group P1 with a = 7.0124(11), b = 11.919(2), c =14.879(3)A, α = 108.791(3), β= 102.441(3), γ = 92.846(2)°, V= 1140.1(3)A3, Mr = 859.71, Z= 2, Do = 2.504 g/cm^3 ,μ = 5.324 mm^-1, F(000) = 804, S = 1.013, the Final R = 0.0297 and wR = 0.0618 for 3534 observed reflections with Ⅰ 〉 2 σ(Ⅰ). 1 consists of [C4HgNH3]+ cations and two-dimensional [Sb4ST]n^2n- anion which is composed of three SbS3 trigonal pyranaids and one SbS4 unit joined by sharing common comers. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3]^+ cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.展开更多
By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which invo...By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.展开更多
Open-framework materials are of great interest from both the theoretical and practical points of view due to their catalytic, absorbent, and ion-exchange properties. In the past decade, the study of structurally and c...Open-framework materials are of great interest from both the theoretical and practical points of view due to their catalytic, absorbent, and ion-exchange properties. In the past decade, the study of structurally and chemically diverse open framework solids has been flourishing. A large variety of silicates, phosphates and carboxylates with open-framework structures have been synthesized with organic amines as templates. It has also been demonstrated that other oxysalts such as selenate, arsenate and germanate are used to build up open architectures. As far as the sulfate is concerned,展开更多
基金supported by the National Natural Science Foundation of China(62205183)the Research Grants Council of Hong Kong(ANR/RGC,Ref.No.A-CUHK404/21).
文摘Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.
基金Project support by the National Natural Science Foundation of China(Grant Nos.11704044 and 12074140)。
文摘The first-principles calculations are performed to examine structural,mechanical,and electronic properties at large strain for a monolayer C_(4)N_(4),which has been predicted as an anchoring promising material to attenuate shuttle effect in Li–S batteries stemming from its large absorption energy and low diffusion energy barrier.Our results show that the ideal strengths of C_(4)N_(4)under tension and pure shear deformation conditions reach 13.9 GPa and 12.5 GPa when the strains are 0.07 and 0.28,respectively.The folded five-membered rings and diverse bonding modes between carbon and nitrogen atoms enhance the ability to resist plastic deformation of C_(4)N_(4).The orderly bond-rearranging behaviors under the weak tensile loading path along the[100]direction cause the impressive semiconductor–metal transition and inverse semiconductor–metal transition.The present results enrich the knowledge of the structure and electronic properties of C_(4)N_(4)under deformations and shed light on exploring other two-dimensional materials under diverse loading conditions.
文摘The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious.
基金Project supported by the Shanghai Nanoscience Foundation,China (Grant Nos. 0852nm07000 and 0952nm07000)the National Natural Science Foundation of China (Grant Nos. 10804084 and 91123022)+1 种基金the National Key Technology R & D Program,China (Grant No. 2006BAF06B08)the Specialized Research Fund for the Doctoral Program of Ministry of High Education of China (Grant No. 200802471008)
文摘Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.
基金Project supported by the National Natural Science Foundations of China(Grant No.61275047)the Research Project of Chinese Ministry of Education(Grant No.213009A)the Scientific and Technological Development Foundation of Jilin Province,China(Grant No.20130101031JC)
文摘Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
文摘The algebraic solitary wave and its associated eigenvalue problem in a deep stratified fluid with a free surface and a shallow upper layer were studied. And its vertical structure was examined. An exact solution for the derived 2D Benjamin-Ono equation was obtained, and physical explanation was given with the corresponding dispersion relation. As a special case, the vertical structure of the weakly nonlinear internal wave for the Holmboe density distribution was numerically investigated, and the propagating mechanism of the internal wave was studied by using the ray theory.
基金the National Research and Development Program of China(Grant Nos.2016YFA0300503 and 2017YFA0302900)the National Natural Science Foundation of China(Grant Nos.12274458,11774420,and 11974194)the Research Funds of Renmin University of China(Grant No.20XNLG19).
文摘Two-dimensional(2D)magnetic materials have attracted tremendous research interest because of the promising application in the next-generation microelectronic devices.Here,by the first-principles calculations,we propose a twodimensional ferromagnetic material with high Curie temperature,manganese tetranitride MnN4monolayer,which is a square-planar lattice made up of only one layer of atoms.The structure is demonstrated to be stable by the phonon spectra and the molecular dynamic simulations,and the stability is ascribed to theπ–d conjugation betweenπorbital of N=N bond and d orbital of Mn.More interestingly,the MnN_(4)monolayer displays robust 2D ferromagnetism,which originates from the strong exchange couplings between Mn atoms due to theπ–d conjugation.The high critical temperature of 247 K is determined by solving the Heisenberg model using the Monte Carlo method.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190736)the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.81701346 and 61603198)Qinglan Team of Universities in Jiangsu Province(Jiangsu Teacher Letter[2020]10 and Jiangsu Teacher Letter[2021]11).
文摘Characterizing the trajectory of the healthy aging brain and exploring age-related structural changes in the brain can help deepen our understanding of the mechanism of brain aging.Currently,most structural magnetic resonance imaging literature explores brain aging merely from the perspective of morphological features,which cannot fully utilize the grayscale values containing important intrinsic information about brain structure.In this study,we propose the construction of two-dimensional horizontal visibility graphs based on the pixel intensity values of the gray matter slices directly.Normalized network structure entropy(NNSE)is then introduced to quantify the overall heterogeneities of these graphs.The results demonstrate a decrease in the NNSEs of gray matter with age.Compared with the middle-aged and the elderly,the larger values of the NNSE in the younger group may indicate more homogeneous network structures,smaller differences in importance between nodes and thus a more powerful ability to tolerate intrusion.In addition,the hub nodes of different adult age groups are primarily located in the precuneus,cingulate gyrus,superior temporal gyrus,inferior temporal gyrus,parahippocampal gyrus,insula,precentral gyrus and postcentral gyrus.Our study can provide a new perspective for understanding and exploring the structural mechanism of brain aging.
基金supported by the National Natural Science Foundation of China (Grant Nos.52225204, 11974074, and 11804048)the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-03-E00109)+3 种基金the Fundamental Research Funds for the Central Universities (2232022G-07 and 2232021D-28)Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2022007)the Program Innovative Research Team in University (IRT_16R13)the International Joint Laboratory for Advanced fiber and Low- dimension Materials (18520750400).
文摘Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries.Herein,a spherical structure consists of ultrathin layered Ti_(3)C_(2)T_(x)-TiN heterostructures(MX-TiN)through in-situ nitridation method is reported.Through controllable nitridation,highly conductive TiN layer grew on the surface and close coupled with interior MXene to form unique 2D heterostructures.The ultrathin heterostructure with only several nanometers in thickness enables outstanding ability to shorten electrons diffusion distance during electrochemical reactions and enlarge active surface with abundant adsorptive and catalytic sites.Moreover,the(001)surface of TiN is dominated by metallic Ti-3d states,which ensures fast transmitting electrons from high conductive MX-TiN matrix and thus guarantees efficient catalytic performance.Calculations and experiments demonstrate that polysulfides are strongly immobilized on MX-TiN,meanwhile the bidirectional reaction kinetics are catalytically enhanced by reducing the conversion barrier between liquid LiPSs and solid Li_(2)S_(2)/Li_(2)S.As a result,the S/MX-TiN cathode achieves excellent long-term cyclability with extremely low-capacity fading rate of 0.022%over 1000 cycles and remarkable areal capacity of 8.27 mAh cm^(−2) at high sulfur loading and lean electrolytes.
文摘Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for various electrocatalytic reactions.Herein,we reviewed recent advances on metallenes in structural regulations including defect,phase,strain,interface,doping,and alloying engineering strategies and their applications in energy electrocatalytic reactions involving oxygen reduction reaction,carbon dioxide reduction reaction,hydrogen evolution reaction,and small molecules oxidation reaction.Finally,we proposed the future challenges and directions in this emerging area.
基金supported by the Hainan Provincial Natural Science Foundation of China(222RC548)the National Natural Science Foun-dation of China(22109034,22109035,52164028,62105083,21805104)+3 种基金the Opening Project of Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(KFKT2021007)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20082,20083,20084,21065,21124,21125)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhys2022-174)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province.
文摘Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.
基金The research of Gui-Qiang G.Chen was supported in part by the UK Engineering and Physical Sciences Research Council Awards EP/L015811/1,EP/V008854/1,EP/V051121/1the Royal Society-Wolfson Research Merit Award WM090014.
文摘We are concerned with global solutions of multidimensional(M-D)Riemann problems for nonlinear hyperbolic systems of conservation laws,focusing on their global configurations and structures.We present some recent developments in the rigorous analysis of two-dimensional(2-D)Riemann problems involving transonic shock waves through several prototypes of hyperbolic systems of conservation laws and discuss some further M-D Riemann problems and related problems for nonlinear partial differential equations.In particular,we present four different 2-D Riemann problems through these prototypes of hyperbolic systems and show how these Riemann problems can be reformulated/solved as free boundary problems with transonic shock waves as free boundaries for the corresponding nonlinear conservation laws of mixed elliptic-hyperbolic type and related nonlinear partial differential equations.
基金support by Australian Research Council under Discovery Project (Grant No. DP170103598)the Pawsey Supercomputing Centre through the National Computational Merit Allocation Scheme supported by the Australian Government and the Government of Western Australia
文摘In recent years, structure design and predictions based on global optimization approach as implemented in CALYPSO software have gained great success in accelerating the discovery of novel two-dimensional(2D) materials. Here we highlight some most recent research progress on the prediction of novel 2D structures, involving elements, metal-free and metal-containing compounds using CALYPSO package. Particular emphasis will be given to those 2D materials that exhibit unique electronic and magnetic properties with great potentials for applications in novel electronics, optoelectronics,magnetronics, spintronics, and photovoltaics. Finally, we also comment on the challenges and perspectives for future discovery of multi-functional 2D materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274219 and 11264036)the STU Scientific Research Foundation forTalentsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘We use the strong field approximation with a time window function controlling the release time of electrons to study the intra-cycle and inter-cycle interferences in few-cycle intense laser pulses impinging on He. The diffraction fringes, i.e., the vertical stripe-like structure, observed in the experimental two-dimensional photoelectron momentum distributions of Gopal et al. (2009 Phys. Rev. Lett. 103 053001) have been attributed to the interplay of the intra- and inter-cycle interferences. The pure numerical calculations by solving the time-dependent Schrrdinger equation are also performed and the results are compared with the experimental measurements directly. It has been found that the position of the stripe-like structure can be used to determine the duration of the laser pulses used in experiments.
基金the National Natural Science Foundation of China under Grant Nos.61871127,61701246,61631007,61571117,61501112,61501117,61522106,61722106,61701107,and 61701108,and 111 Project under Grant No.111-2-05.
文摘Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits.However,to provide stronger field confinement,larger width of strip is required to load deeper grooves,which is cumbersome in modern large-scale integrated circuits and chips.In this work,a new spoof SPP transmission line (TL) with zigzag grooves is proposed.This new structure can achieve stronger field confinement compared to conventional one with the same strip width.In other words,the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size.Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs.Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size.Furthermore,two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration.Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL.Hence,this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.
基金the Natural Science Foundation of Universities of Jiangsu Province (No. 05KJB150110)
文摘An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system, space group P1 with a = 7.0124(11), b = 11.919(2), c =14.879(3)A, α = 108.791(3), β= 102.441(3), γ = 92.846(2)°, V= 1140.1(3)A3, Mr = 859.71, Z= 2, Do = 2.504 g/cm^3 ,μ = 5.324 mm^-1, F(000) = 804, S = 1.013, the Final R = 0.0297 and wR = 0.0618 for 3534 observed reflections with Ⅰ 〉 2 σ(Ⅰ). 1 consists of [C4HgNH3]+ cations and two-dimensional [Sb4ST]n^2n- anion which is composed of three SbS3 trigonal pyranaids and one SbS4 unit joined by sharing common comers. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3]^+ cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.
文摘By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.
基金Supported by the National Natural Science Foundation of China(Nos.29873017, 20101004 and 29825504) the State BasicResearch Project(No.G2000077507).
文摘Open-framework materials are of great interest from both the theoretical and practical points of view due to their catalytic, absorbent, and ion-exchange properties. In the past decade, the study of structurally and chemically diverse open framework solids has been flourishing. A large variety of silicates, phosphates and carboxylates with open-framework structures have been synthesized with organic amines as templates. It has also been demonstrated that other oxysalts such as selenate, arsenate and germanate are used to build up open architectures. As far as the sulfate is concerned,