4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high qu...4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high quantum efficiency,which benefit from the large bandgap energy,high carrier drift velocity and excellent physical stability of 4 H-SiC semiconductor material.UV detectors are widely used in many key applications,such as missile plume detection,corona discharge,UV astronomy,and biological and chemical agent detection.In this paper,we will describe basic concepts and review recent results on device design,process development,and basic characterizations of 4 H-SiC avalanche photodiodes.Several promising device structures and uniformity of avalanche multiplication are discussed,which are important for achieving high performance of 4 HSiC UV SPADs.展开更多
Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitorin...Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications.展开更多
基金supported in part by National Key R&D Program of China under Grant No. 2016YFB0400902in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘4H-SiC single photon counting avalanche photodiodes(SPADs)are prior devices for weak ultraviolet(UV)signal detection with the advantages of small size,low leakage current,high avalanche multiplication gain,and high quantum efficiency,which benefit from the large bandgap energy,high carrier drift velocity and excellent physical stability of 4 H-SiC semiconductor material.UV detectors are widely used in many key applications,such as missile plume detection,corona discharge,UV astronomy,and biological and chemical agent detection.In this paper,we will describe basic concepts and review recent results on device design,process development,and basic characterizations of 4 H-SiC avalanche photodiodes.Several promising device structures and uniformity of avalanche multiplication are discussed,which are important for achieving high performance of 4 HSiC UV SPADs.
基金support from the National Key R&D Program of China(2017YFA0700500)National Natural Science Foundation of China(61775144/61525503/61620106016/61835009/81727804)+2 种基金(Key)Project of Department of Education of Guangdong Province(2015KGJHZ002/2016KCXTD007)Guangdong Natural Science Foundation(2014A030312008,2017A030310132,2018A030313362)Shenzhen Basic Research Project(JCYJ20170818144012025/JCYJ20170818141701667/JCYJ20170412105003520/JCYJ20150930104948169).
文摘Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications.