Background: The prevalence of Parkinson’s disease (PD), a chronic and progressive neurodegenerative disorder, is projected to increase twofold by 2030. Leucine-rich repeat kinase 2 (LRRK2) is the most commonly observ...Background: The prevalence of Parkinson’s disease (PD), a chronic and progressive neurodegenerative disorder, is projected to increase twofold by 2030. Leucine-rich repeat kinase 2 (LRRK2) is the most commonly observed gene in both familial and sporadic PD cases. Notably, there is a substantial augmentation in motor activity during both larval and adult stages of zebrafish lacking the lrrk2 gene. Nevertheless, the precise genetic abnormalities accountable for eliciting these phenotypes in zebrafish are yet to be elucidated. Methods: Real-time polymerase chain reaction (PCR) was conducted on zebrafish larvae at 6 days post fertilization (dpf) belonging to both the wild-type and lrk2(-/-) groups. Guide RNA was designed and subsequently employed in the PCR process. Electrophoresis was performed to facilitate identification. Results: The expression of CNTF mRNA was significantly diminished in lrrk2(-/-), in comparison to the wildtype zebrafish larvae. This finding implies that CNTF may have crucial implications in the regulated functioning of lrrk2, which is widely acknowledged as the predominant genetic factor contributing to hereditary PD. The primers for CNTF DNA were meticulously designed, and the electrophoresis results of the PCR product were subsequently presented. The wild type zebrafish embryos were meticulously prepared for micro-injection, and the resulting efficiency identification displayed the presence of the mutant PCR product, which exhibited the presence of several debris. Conclusions: The present study demonstrates the successful generation of CNTF mutant zebrafish using the CRISPR/Cas9 genome editing technique. Further investigations are necessary to deepen our understanding of the exogenous CNTF gene’s functionality.展开更多
The instability of perovskite materials under continuous ultraviolet(UV)light irradiation and high sensitivity in humid environments remain obstacles to future commercialization.Especially,the photovoltaic performance...The instability of perovskite materials under continuous ultraviolet(UV)light irradiation and high sensitivity in humid environments remain obstacles to future commercialization.Especially,the photovoltaic performance of perovskite solar cells(PVSCs)is prone to decline under UV light exposure for sustained periods of time.However,in conventional methods,preventing UV light from entering PVSCs usually comes at the expense of reducing short circuit photocurrent(Jsc).Herein,the UV stability of PVSCs is modified by in-troducing a singlet fission down-conversion layer 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-PEN)via one-step anti-solvent method without sacrificing device efficiency.The introduction of down conversion layer can not only improve the Jsc by converting UV light into multiple excitons,but also enhance the open-circuit voltage(Voc)owing to a better matched energy level alignment at the perovskite/spiro-OMeTAD interface.Consequently,the TIPS-PEN incorporated PVSCs attain the champion power conversion effi-ciency(PCE)up to 22.92%accompanied with dramatically increased UV photostability which can retain 80%of its primitive PCE un-der continuous UV light soaking for 150 h.Moreover,the unencapsulated PVSCs with TIPS-PEN exhibit remarkable moisture stability which can sustain over 80%of the initial value under air conditions(50%relative humidity,25℃)after 1000 h.展开更多
An improved method for stabilizing a frequency-quadrupled 214.5-nm tunable diode laser system is re- ported. Improvements to the method include a homemade logic circuit and the use of a Fabry-Perot optical spectrum an...An improved method for stabilizing a frequency-quadrupled 214.5-nm tunable diode laser system is re- ported. Improvements to the method include a homemade logic circuit and the use of a Fabry-Perot optical spectrum analyzer as a transfer cavity. Lasers locked with this method exhibit megahertz-level frequency stability measured with an optical frequency comb referenced to a cesium atomic standard. The laser can be locked for hours to days, depending on experiment requirements. Being relatively inexpensive, stable, and robust, the control method can be applied to stabilizing essentially all lasers of deep ultraviolet wavelengths.展开更多
文摘Background: The prevalence of Parkinson’s disease (PD), a chronic and progressive neurodegenerative disorder, is projected to increase twofold by 2030. Leucine-rich repeat kinase 2 (LRRK2) is the most commonly observed gene in both familial and sporadic PD cases. Notably, there is a substantial augmentation in motor activity during both larval and adult stages of zebrafish lacking the lrrk2 gene. Nevertheless, the precise genetic abnormalities accountable for eliciting these phenotypes in zebrafish are yet to be elucidated. Methods: Real-time polymerase chain reaction (PCR) was conducted on zebrafish larvae at 6 days post fertilization (dpf) belonging to both the wild-type and lrk2(-/-) groups. Guide RNA was designed and subsequently employed in the PCR process. Electrophoresis was performed to facilitate identification. Results: The expression of CNTF mRNA was significantly diminished in lrrk2(-/-), in comparison to the wildtype zebrafish larvae. This finding implies that CNTF may have crucial implications in the regulated functioning of lrrk2, which is widely acknowledged as the predominant genetic factor contributing to hereditary PD. The primers for CNTF DNA were meticulously designed, and the electrophoresis results of the PCR product were subsequently presented. The wild type zebrafish embryos were meticulously prepared for micro-injection, and the resulting efficiency identification displayed the presence of the mutant PCR product, which exhibited the presence of several debris. Conclusions: The present study demonstrates the successful generation of CNTF mutant zebrafish using the CRISPR/Cas9 genome editing technique. Further investigations are necessary to deepen our understanding of the exogenous CNTF gene’s functionality.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52063019,51973088,51963016,51833004,U20A20128,U1801256)"Key Project of Jiangxi Provincial Natural Science Foundation(20224ACB203007)".
文摘The instability of perovskite materials under continuous ultraviolet(UV)light irradiation and high sensitivity in humid environments remain obstacles to future commercialization.Especially,the photovoltaic performance of perovskite solar cells(PVSCs)is prone to decline under UV light exposure for sustained periods of time.However,in conventional methods,preventing UV light from entering PVSCs usually comes at the expense of reducing short circuit photocurrent(Jsc).Herein,the UV stability of PVSCs is modified by in-troducing a singlet fission down-conversion layer 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-PEN)via one-step anti-solvent method without sacrificing device efficiency.The introduction of down conversion layer can not only improve the Jsc by converting UV light into multiple excitons,but also enhance the open-circuit voltage(Voc)owing to a better matched energy level alignment at the perovskite/spiro-OMeTAD interface.Consequently,the TIPS-PEN incorporated PVSCs attain the champion power conversion effi-ciency(PCE)up to 22.92%accompanied with dramatically increased UV photostability which can retain 80%of its primitive PCE un-der continuous UV light soaking for 150 h.Moreover,the unencapsulated PVSCs with TIPS-PEN exhibit remarkable moisture stability which can sustain over 80%of the initial value under air conditions(50%relative humidity,25℃)after 1000 h.
基金supported by the National "973" Program of China(No.2010CB922901)the Tsinghua University Scientific Research Initiative Program(No.20091081474)
文摘An improved method for stabilizing a frequency-quadrupled 214.5-nm tunable diode laser system is re- ported. Improvements to the method include a homemade logic circuit and the use of a Fabry-Perot optical spectrum analyzer as a transfer cavity. Lasers locked with this method exhibit megahertz-level frequency stability measured with an optical frequency comb referenced to a cesium atomic standard. The laser can be locked for hours to days, depending on experiment requirements. Being relatively inexpensive, stable, and robust, the control method can be applied to stabilizing essentially all lasers of deep ultraviolet wavelengths.