Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also...Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.展开更多
Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously repor...Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.展开更多
Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, p...Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.展开更多
The effects of temperature,pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin(bHb) were studied using circular dichroism(CD) and ultraviolet-visible(UV-vis) spectr...The effects of temperature,pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin(bHb) were studied using circular dichroism(CD) and ultraviolet-visible(UV-vis) spectroscopies.Neural network software was used to deconvolute the CD data to obtain the fractional content of the five secondary structures.The storage stability of bHb solutions in pH 6,7 and8 buffers was significantly higher at 4 ℃ than at 23 ℃ for the first 3 days.A complete denaturation of bHb was observed after 40 days irrespective of storage temperature or pH.The bHb solutions were also exposed to heating and cooling cycles between 25 and 65 ℃ and structural changes were followed by UVvis and CD spectroscopies.These experiments demonstrated that α-helix content of bHb decreased steadily with the increasing temperature above 35 ℃ at all pH values.The loss in a-helicity and gain in random coil conformations was pH-dependent and the greatest under alkaline conditions.Furthermore,there was minimal recovery of the secondary structure content upon cooling to 25 ℃.The use of bHb as a model drug is very common and this study elucidates the significance of storage and processing conditions on its stability.展开更多
The ultraviolet-visible light spectrophotometer method was adopted to determine thioglucoside in cabbage with the seeds.Individual plant of cabbage was used as test materials,palladium chloride as complexing agent and...The ultraviolet-visible light spectrophotometer method was adopted to determine thioglucoside in cabbage with the seeds.Individual plant of cabbage was used as test materials,palladium chloride as complexing agent and sodium cellulose glycolate as dispersing agent.The results showed that palladiumd thioglucoside method could be taken as a quick,easy and precise quantitative analysis method to determine thioglucoside in cabbage.展开更多
Gallium oxide(Ga_(2)O_(3))is a promising material for deep-ultraviolet(DUV)detection.In this work,Chlorin e6(Ce6)has been integrated with Ga_(2)O_(3)to achieve a DUV and visible dual-band photodetector,which can achie...Gallium oxide(Ga_(2)O_(3))is a promising material for deep-ultraviolet(DUV)detection.In this work,Chlorin e6(Ce6)has been integrated with Ga_(2)O_(3)to achieve a DUV and visible dual-band photodetector,which can achieve multiple target information and improve the recognition rate.The photodetector shows two separate response bands at 268 nm and 456 nm.The DUV response band has a responsivity of 9.63 A/W with a full width at half maximum(FWHM)of 54.5 nm;the visible response band has a responsivity of 1.17 A/W with an FWHM of 45.3 nm.This work may provide a simple way to design and fabricate photodetectors with dual-band response.展开更多
Polyethylene terephthalate(PET)films were irradiated at room temperature with ions of 35 MeV/u^(40)Ar,25 MeV/u^(84)Kr,15.1 MeV/u^(136)Xe and 11.4 MeV/u^(238)U to fluences ranging from 9×10~9 to 5.5×10^(120 i...Polyethylene terephthalate(PET)films were irradiated at room temperature with ions of 35 MeV/u^(40)Ar,25 MeV/u^(84)Kr,15.1 MeV/u^(136)Xe and 11.4 MeV/u^(238)U to fluences ranging from 9×10~9 to 5.5×10^(120 ions/cm^2.The radiation-induced chemical changes were investigated by ultraviolet/visible(UV/Vis)spectroscopy.It is found that the semi-transparency films become gradually opaque to the visible light and the absorption展开更多
Nanometer zinc oxide was prepared by solid phase reaction. And the ultraviolet visible spectral properties of nanometer zinc oxide colloidal solution dispersed in both water and oil phases were studied. The results sh...Nanometer zinc oxide was prepared by solid phase reaction. And the ultraviolet visible spectral properties of nanometer zinc oxide colloidal solution dispersed in both water and oil phases were studied. The results show that the absorbance of the colloidal solution to ultraviolet light increases with the decrease of wavelength and reaches about 2.5 at the wavelength of 200 nm. When the mass fraction of nanometer zinc oxide becomes lower, the transmittance of the colloidal solution to visible light gets higher, and it is much higher than that of normal zinc oxide under the same conditions, indicating that nanometer zinc oxide dispersed in both water and oil phases has high transmittance to visible light and good shield to ultraviolet light. Therefore it is suitable for the replacement of organic ultraviolet absorber and titanium dioxide in cosmetics.展开更多
To observe the role of electronic energy loss(dE/dX)_e on chemical modification of polyimide(PI),the multi layer stacks of polyimide were irradiated by different swift heavy ions under vacuum and at room temperature.T...To observe the role of electronic energy loss(dE/dX)_e on chemical modification of polyimide(PI),the multi layer stacks of polyimide were irradiated by different swift heavy ions under vacuum and at room temperature.The irradiatioins with 1.37 GeV^(40)Ar,1.98 GeV^(84)Kr and 1.755 GeV^(136)Xe were performed at HIRFL(Lanzhou,China),and the irradiation with 2.636 GeV^(238)U was performed at UNILAC(Darmstadt,Germany).Thechemical changes of modified PI films were studied by ultraviolet/visible(UV/Vis)absorpt...展开更多
The increasing importance of endothelium-derived relaxing factor(EDRF),which has now been identified as nitric oxide (NO),has been underscored by the eltlcidation of its role'in a growing number of normal and path...The increasing importance of endothelium-derived relaxing factor(EDRF),which has now been identified as nitric oxide (NO),has been underscored by the eltlcidation of its role'in a growing number of normal and pathophysiological processes. Therefore techniques for detection of nitric oxide should serve as useful tools in defining the role of nitric oxide to these processes.We have improved a simple, sensitive assay methods for determination of nitric oxide in blood, tissue, and other body fluids both by fluorometric and by ultraviolet-visible spectrophotometric measurements. Data obtained by floores cence and by UV-visible assay were correlated well (r=0. 9938, P<0. 0001 ).Linearity:0.1 ̄ 100μmol/L,r =0.9996,P<0.0001. The minimum detection limit were < 10pmol/L. Within-and between-run CVs were 2. 48%and 4. 62% (n = 10),respectively.Reference values for healthy adults(n=40) were(9.82 ± 1. 57) pmol/L. In conclusion:the methods is sensitive, specific,and precise. It is fairly rapid and simple to perform andrequires no pretreatment of sample, i. e., plasma and urine.The value can be obtained by fluorimeter and/or UV-visible spectrophotometer.The present method is sufficiently rapid and simple to make this a practical choice for many laboratories.展开更多
文摘Solar-induced skin damage continues to pose a problem to human health worldwide, despite the widespread recommendation and use of sunscreens. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photoageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. To evaluate the enhanced solar-spectrum blocking ability of iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The sample without iron oxide (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared wavelengths. The samples with yellow, and red iron oxide blocked over 90% ultraviolet, but did not block visible light and near-infrared effectively. The sample with black iron oxide blocked visible light, and near-infrared effectively compared with other samples with yellow, blue, and red iron oxide. The sample with red and black iron oxides, and the sample with yellow, blue, red, and black iron oxides blocked ultraviolet through to near-infrared. It can be concluded that dark colored iron oxide combinations are effective at blocking from ultraviolet through to visible light and near-infrared radiation. The results of this study may also suggest that biological colour of human skin and subcutaneous tissues are conserved for comprehensive photoprotection.
文摘Despite the widespread recommendation and use of sunscreens and ultraviolet blocking materials, solar-induced skin damage and photoageing continues to pose a problem to human health worldwide. We have previously reported that solar visible light and near-infrared also contribute to skin damage and photo ageing. Most commonly recommended sunscreens are only effective throughout the UV spectrum, offering no protection from visible light and near-infrared. A possible solution could be to augment sunscreens with metal oxides which block visible light and near-infrared radiation. To evaluate the enhanced solar-spectrum blocking ability of novel low viscosity sunscreen containing zinc and iron oxides, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer deploys a unique, single monochromatic design to detect wavelength penetration in the range of 240 to 2600 nm. The Sunscreen base without zinc oxide and iron oxides (control) blocked over 80% of ultraviolet-C and ultraviolet-B but did not block ultraviolet-A, visible light, or near-infrared. The novel low viscosity zinc oxide sample blocked almost over 90% ultraviolet, but did not block visible light and near-infrared sufficiently. However, the samples with the novel low viscosity zinc oxide, iron oxides and erioglaucine blocked almost over 90% of ultraviolet, visible light and near-infrared. It can be concluded that this novel combination of low viscosity zinc oxide, iron oxides and erioglaucine is effective at blocking ultraviolet, visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be adopted to prevent skin photodamage.
文摘Despite the widespread prevalence of daily sunscreen usage, solar-induced skin damage continues to occur. We have previously reported that solar visible light and near-infrared, in addition to ultraviolet radiation, perform as aging factors and induce deleterious effects such as photoaging, vasodilation, muscle thinning, skin ptosis, photoimmunosupression and photocarcinogenesis. Despite this, most commonly used sunscreens only block ultraviolet radiation. To evaluate the complete solar-spectrum blocking ability of sunscreens produced by internationally well-known companies, a double-beam spectrophotometer was used to optically measure the transmission spectra. The spectrophotometer utilizes a unique, single monochromatic design covering a wavelength range of 240 to 2600 nm. Sunscreens (thickness, 0.1 mm, SPF50+, PA+++ or ++++) from internationally well-known companies blocked 78.8% - 99.9% of ultraviolet, 33.4% - 99.6% of visible light, and 27.0% - 76.4% of near-infrared. It can be concluded that while most commercially available sunscreens filter ultraviolet radiation, they are not effective at blocking visible light and near-infrared radiation. The results of this study imply that sunscreens that provide comprehensive photoprotection from ultraviolet through to near-infrared should be considered to prevent skin photodamage.
基金the University of Greenwich for financial support
文摘The effects of temperature,pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin(bHb) were studied using circular dichroism(CD) and ultraviolet-visible(UV-vis) spectroscopies.Neural network software was used to deconvolute the CD data to obtain the fractional content of the five secondary structures.The storage stability of bHb solutions in pH 6,7 and8 buffers was significantly higher at 4 ℃ than at 23 ℃ for the first 3 days.A complete denaturation of bHb was observed after 40 days irrespective of storage temperature or pH.The bHb solutions were also exposed to heating and cooling cycles between 25 and 65 ℃ and structural changes were followed by UVvis and CD spectroscopies.These experiments demonstrated that α-helix content of bHb decreased steadily with the increasing temperature above 35 ℃ at all pH values.The loss in a-helicity and gain in random coil conformations was pH-dependent and the greatest under alkaline conditions.Furthermore,there was minimal recovery of the secondary structure content upon cooling to 25 ℃.The use of bHb as a model drug is very common and this study elucidates the significance of storage and processing conditions on its stability.
文摘The ultraviolet-visible light spectrophotometer method was adopted to determine thioglucoside in cabbage with the seeds.Individual plant of cabbage was used as test materials,palladium chloride as complexing agent and sodium cellulose glycolate as dispersing agent.The results showed that palladiumd thioglucoside method could be taken as a quick,easy and precise quantitative analysis method to determine thioglucoside in cabbage.
文摘Gallium oxide(Ga_(2)O_(3))is a promising material for deep-ultraviolet(DUV)detection.In this work,Chlorin e6(Ce6)has been integrated with Ga_(2)O_(3)to achieve a DUV and visible dual-band photodetector,which can achieve multiple target information and improve the recognition rate.The photodetector shows two separate response bands at 268 nm and 456 nm.The DUV response band has a responsivity of 9.63 A/W with a full width at half maximum(FWHM)of 54.5 nm;the visible response band has a responsivity of 1.17 A/W with an FWHM of 45.3 nm.This work may provide a simple way to design and fabricate photodetectors with dual-band response.
文摘Polyethylene terephthalate(PET)films were irradiated at room temperature with ions of 35 MeV/u^(40)Ar,25 MeV/u^(84)Kr,15.1 MeV/u^(136)Xe and 11.4 MeV/u^(238)U to fluences ranging from 9×10~9 to 5.5×10^(120 ions/cm^2.The radiation-induced chemical changes were investigated by ultraviolet/visible(UV/Vis)spectroscopy.It is found that the semi-transparency films become gradually opaque to the visible light and the absorption
文摘Nanometer zinc oxide was prepared by solid phase reaction. And the ultraviolet visible spectral properties of nanometer zinc oxide colloidal solution dispersed in both water and oil phases were studied. The results show that the absorbance of the colloidal solution to ultraviolet light increases with the decrease of wavelength and reaches about 2.5 at the wavelength of 200 nm. When the mass fraction of nanometer zinc oxide becomes lower, the transmittance of the colloidal solution to visible light gets higher, and it is much higher than that of normal zinc oxide under the same conditions, indicating that nanometer zinc oxide dispersed in both water and oil phases has high transmittance to visible light and good shield to ultraviolet light. Therefore it is suitable for the replacement of organic ultraviolet absorber and titanium dioxide in cosmetics.
文摘To observe the role of electronic energy loss(dE/dX)_e on chemical modification of polyimide(PI),the multi layer stacks of polyimide were irradiated by different swift heavy ions under vacuum and at room temperature.The irradiatioins with 1.37 GeV^(40)Ar,1.98 GeV^(84)Kr and 1.755 GeV^(136)Xe were performed at HIRFL(Lanzhou,China),and the irradiation with 2.636 GeV^(238)U was performed at UNILAC(Darmstadt,Germany).Thechemical changes of modified PI films were studied by ultraviolet/visible(UV/Vis)absorpt...
文摘The increasing importance of endothelium-derived relaxing factor(EDRF),which has now been identified as nitric oxide (NO),has been underscored by the eltlcidation of its role'in a growing number of normal and pathophysiological processes. Therefore techniques for detection of nitric oxide should serve as useful tools in defining the role of nitric oxide to these processes.We have improved a simple, sensitive assay methods for determination of nitric oxide in blood, tissue, and other body fluids both by fluorometric and by ultraviolet-visible spectrophotometric measurements. Data obtained by floores cence and by UV-visible assay were correlated well (r=0. 9938, P<0. 0001 ).Linearity:0.1 ̄ 100μmol/L,r =0.9996,P<0.0001. The minimum detection limit were < 10pmol/L. Within-and between-run CVs were 2. 48%and 4. 62% (n = 10),respectively.Reference values for healthy adults(n=40) were(9.82 ± 1. 57) pmol/L. In conclusion:the methods is sensitive, specific,and precise. It is fairly rapid and simple to perform andrequires no pretreatment of sample, i. e., plasma and urine.The value can be obtained by fluorimeter and/or UV-visible spectrophotometer.The present method is sufficiently rapid and simple to make this a practical choice for many laboratories.